1. $\angle C A B \cong \angle D A B$;
$\angle C \cong \angle D ;$
$\angle A B C \cong \angle A B D ;$
$\overline{A C} \cong \overline{A D} ; \overline{A B} \cong \overline{A B} ;$
$\overline{C B} \cong \overline{D B}$
2. $\angle G E F \cong \angle J H I$;
$\angle G F E \cong \angle J I H ;$
$\angle E G F \cong \angle H J I ;$
$\overline{G E} \cong \overline{J H} ; \overline{E F} \cong \overline{H I} ;$
$\overline{F G} \cong \overline{I J}$
3. $\overline{B K}$
4. $\overline{C M}$
5. $\overline{M L}$
6. $\angle B$
7. $\angle C$
8. $\angle J$
9. $\triangle K J B$
10. $\triangle C L M$
11. $\triangle J B K$
12. $\triangle M C L$
13. $\mathrm{E}, \mathrm{K}, \mathrm{G}, \mathrm{N}$
14. | $\overline{P O}$ |
| :--- |
| $\overline{L Y} \cong \overline{S I} ; \overline{O L} \cong \overline{I D} ;$ |
| $P Y$ |
| $S E$ |
15. 33 in .
16. 54 in .
17. 36 in.
18. 34 in .
19. Yes; $\angle R T K \cong \angle U T K, \angle R \cong \angle U$ (Given) $\angle R K T \cong \angle U K T$ If two $\underline{\Delta s}$ of a \triangle are \cong to two $\angle s$ of another \triangle, the third $\angle \mathrm{s}$ are $\cong . \overline{T R} \cong \overline{T U}, \overline{R K} \cong \overline{U K}$ (Given) $\overline{T K} \cong \overline{T K}$ (Reflexive Prop. of $\cong) \triangle T R K \cong \triangle T U K ~(D e f . ~ o f ~ \cong ~ © ~) ~$
20. No; the corr. sides are not \cong.
21. No; corr. sides are not necessarily \cong.
22. Yes; all corr. sides and $\angle \mathrm{s}$ are \cong.
23. $\overline{A B} \cong \overline{D C}, \overline{B C} \cong \overline{A D}$ are given. $\overline{A C} \cong \overline{A C}$ by the Refl. Prop. $\angle B \cong \angle D$ is given, and by the Alt. Int. \angle Thm., $\angle B C A \cong \angle D A C$ and $\angle B A C \cong \angle D C A$. So $\triangle A B C \cong \triangle C D A$ by the def. of \cong ©.
24. B
25. $x=15$; $t=2$
26. 5
27. $m \angle A=m \angle D=20$
28. $m \angle B=m \angle E=21$
29. $B C=E F=8$
30. $A C=D F=19$
31. Answers may vary. Sample: It is important that $P A C H \cong$ $O L D E$ for the patch to completely fill the hole.
32. Answers may vary. Sample: She could arrange them in a neat pile and pull out the ones of like sizes.
33. $\triangle J Y B \cong \triangle X C H$
34. $\triangle T P K \cong \triangle T R K$
35. $\triangle B C E \cong \triangle A D E$
36. $\triangle J L M \cong \triangle N R Z$;
$\triangle J L M \cong \triangle Z R N$
37. Answers may vary. Sample: The die is a mold that is used to make items that are all the same size.
38. Answers may vary. Sample: $\triangle T K R \cong \triangle M J L$:
$\overline{T K} \cong \overline{M J} ; \overline{T R} \cong \overline{M L} ; \overline{K R} \cong \overline{J L} ; \angle T K R \cong \angle M J L ;$ $\angle T R K \cong \angle M L J ; \angle K T R \cong \angle J M L$
39. $\overline{P R} \cong \overline{T Q}, \overline{P S} \cong \overline{Q S}$ (Given), $\overline{R S} \cong \overline{T S}$ (def. of bisect), $\angle P S R \cong \angle Q S T$ (Vert. $\angle \mathrm{s}$ are \cong.),$\angle S P R \cong \angle S Q T$ (Alt. Int. \angle Thm.) $\angle P R S \cong \angle Q T S$ (If $2 \angle$ of a \triangle are \cong to $2 \angle s$ of another \triangle, the third $\measuredangle s$ are \cong.) So $\triangle P R S \cong \triangle Q T S$ by the def. of \cong ©.
40. $\angle A \cong \angle D, \angle B \cong \angle E$ (Given), $m \angle A+m \angle B+m \angle C=$ 180, $m \angle D+m \angle E+m \angle F=180$ ($\triangle-\angle$ Sum Thm.), $m \angle A+$ $m \angle B+m \angle C=m \angle D+m \angle E+m \angle F$ (Subst. Prop.), $m \angle D$ $+m \angle E+m \angle C=m \angle D+m \angle E+m \angle F$ (Subst. Prop.), $m \angle C=m \angle F$ (Subtr.)
41. $K L=4 ; L M=3 ; K M=5$
42. 2 ; either $(3,1)$ or $(3,-7)$
43. a. 15

-

1. a. Given
b. Reflexive
c. $\triangle J K M$
d. $\triangle L M K$
2. $\overline{I E} \cong \overline{G H}, \overline{E F} \cong \overline{H F}$: given. F is the midpoint of $\overline{G I}$; given. $\overline{I F} \cong \overline{F G}$ by the definition of midpoint. Therefore, $\triangle E F I \cong$ $\triangle H F G$ by SSS.
3. It is given that $\overline{W Z} \cong \overline{Z S} \cong \overline{S D} \cong \overline{D W} \cdot \overline{Z D} \cong \overline{Z D}$ by the Reflexive Property of Congruence. Therefore, $\triangle W Z D \cong$ $\triangle S D Z$ by SSS.
4. Yes; $\overline{O B} \cong \overline{O B}$ by Refl. Prop.; $\angle B O P \cong \angle B O R$ since all rt. $\angle \mathrm{s}$ are $\cong ; \overline{O P} \cong \overline{O R}$ (Given); the $\&$ are \cong by SAS.
5. Yes; $\overline{A C} \cong \overline{D B}$ (Given); $\overline{A E} \cong \overline{C E}$ and $\overline{B E} \cong \overline{D E}$ (Def. of midpt.); $\angle A E B \cong \angle C E D$ (vert. $\angle \mathrm{s}$ are \cong) $\triangle A E B \cong \triangle C E D$ by SAS .
6. No; either $\overline{P Q} \cong \overline{Q S}$ is needed for SSS , or $\angle T \cong \angle R$ for SAS.
7. Yes; since $\overline{A C} \cong \overline{A C}$ by the Refl. Prop., the © are \cong by SAS.
8. $\overline{L G} \cong \overline{M N}$
9. $\angle T \cong \angle V$ or $\overline{R S} \cong \overline{W U}$
10. $\overline{W V}, \overline{V U}$
11. $\angle W$
12. $\angle U, \angle V$
13. $\overline{W U}$
14. $\angle X$
15. $\overline{X Z}, \overline{Y Z}$
16. Yes; $\triangle A C B \cong \triangle E F D$ by SAS.
17. Yes; $\triangle P V Q \cong \triangle S T R$ by SSS.
18. $\angle A X N \cong \angle G X R$ (Vert. $\angle \mathrm{s}$ are \cong.), $\overline{A X} \cong \overline{G X}$ and $\overline{N X} \cong$ $\overline{R X}$ (def. of midpoint), so $\triangle A N X \cong \triangle G R X$ by SAS.
19. A
20. $\triangle A N G \cong \triangle R W T$; SAS

21. $\triangle K L J \cong \triangle M O N ;$ SSS

22. Not possible; need $\angle H \cong \angle P$ or $\overline{D Y} \cong \overline{T K}$.
23. $\triangle J E F \cong \triangle S V F$ or $\triangle J E F \cong \triangle S F V$; SSS
24. $\triangle B R T \cong \triangle B R S ;$ 25S $\triangle P Q R \cong \triangle N M O ;$ SAS
25. $G K$ bisects $\angle J G M$, so $\angle J G K \cong \angle M G K$ (def. of bisect.). $\overline{G J} \cong \overline{G M}$ (given), and $\overline{G K} \cong \overline{G K}$ (Reflexive Prop. of \cong). $\triangle G J K \cong \triangle G M K$ by SAS.
26. $\overline{A E}$ and $\overline{B D}$ bisect each other, so $\overline{A C} \cong \overline{C E}$ and $\overline{B C} \cong \overline{C D}$. $\angle A C B \cong \angle D C E$ because vert. $\angle \mathrm{s}$ are $\cong . \triangle A C B \cong \triangle E C D$ by SAS.
27. No; even though the \measuredangle are \cong, the sides may not be.
28. No; you would need $\angle H \cong \angle K$ or $\overline{G I} \cong \overline{J L}$.
29. yes; SAS
30.

32.

33. a-b. Answers may vary. Sample:
a. wallpaper designs; ironwork on a bridge; highway warning signs
b. \cong \& produce a well-balanced, symmetric appearance. In construction, \cong § enhance designs. Highway warning signs are more easily identified if they are \cong.
34. $\angle I S P \cong \angle P S O ; \triangle I S P \cong \triangle O S P$ by SAS.
35. $\overline{I P} \cong \overline{P O} ; \triangle I S P \cong \triangle O S P$ by SSS.
36. Yes; $\triangle A D B \cong \triangle C B D$ by SAS; $\angle A D B \cong \angle D B C$ because if $\|$ lines, then alt. int. \llcorner are \cong.
37. Yes; $\triangle A B C \cong \triangle C D A$ by SAS; $\angle D A C \cong \angle A C B$ because if $\|$ lines, then alt. int. \llcorner are \cong.
38. 1. $\overline{F G} \| \overline{K L}$ (Given)
2. $\angle G F K \cong \angle F K L$ (If $\|$ lines, then alt. int. $\angle s$ are \cong.)
3. $\overline{F G} \cong \overline{K L}$ (Given)
4. $\overline{F K} \cong \overline{F K}$ (Reflexive Prop. of \cong)
5. $\triangle F G K \cong \triangle K L F(S A S)$
39. $\overline{A M} \cong \overline{M B}$ because M is the midpt. of $\overline{A B} . \angle B \cong \angle A M C$ because all right \measuredangle are $\cong . \overline{C M} \cong \overline{D B}$ is given. $\triangle A M C \cong$ $\triangle M B D$ by SAS.
40. $H G=H K+K G$ and $K L=K G+G L$ by the Seg. Add. Post. Since $H K=G L$, use subst. twice to get $H G=G L+K G=$ $K L$. So $\overline{H G} \cong \overline{K L}$ and the © are \cong by SSS.
41. $\triangle M N O \cong \triangle O \underline{L M}$ by SAS. Therefore $\angle N M O \cong \angle L O M$ by def. of $\cong \S$, so $\overline{M N} \| \overline{L O}$ by the Conv. of the Alt. Int. $\angle \mathrm{s}$ Thm.

Answers for Lesson 4-2, pp. 208-211 Exercises (cont.)

42. Answers may vary. Sample:

43. a. No; the angles are not necessarily \cong.
b. No; sample explanation: the $\angle s$ can be changed without changing the side lengths.
c. Answers may vary. Sample: a diagonal
44. $\triangle P Q R \cong \triangle V X W$
45. $\triangle A C B \cong \triangle E F D$
46. $\overline{R S}$
47. $\angle N$ and $\angle O$
48. a. Reflexive
b. ASA
49. $\angle B A C \cong \angle D A C$ (given)
$\overline{A C} \perp \overline{B D}$ (given)
$\overline{A C} \cong \overline{A C}$ (Reflex. Prop. \cong)
$\angle D C A \cong \angle B C A(\mathrm{rt} . \angle \mathrm{s}$ are $\cong)$
$\triangle A B C \cong \triangle A D C(\mathrm{ASA})$
50. $\overline{Q R} \cong \overline{T S}$ (given)
$\overline{Q R} \| \overline{S T}$ (given)
$\angle T Q R \cong \angle Q T S$ (Alt. Int. $\angle \mathrm{s}$ Thm.)
$\angle Q T R \cong \angle T Q S$ (Alt. Int. $\angle \mathrm{s}$ Thm.)
$\triangle Q R T \cong \triangle T S Q(\mathrm{AAS})$
51. a. $\angle U W V$
b. $\overline{U W}$
c. right
d. Reflexive
52. It is given that $\angle U W T$ and $\angle U W V$ are right \measuredangle and that $\angle T \cong \angle V . \angle U W T \cong \angle U W V$ since all right $\angle \mathrm{s}$ are congruent. $\overline{U W} \cong \overline{U W}$ by the Reflexive Property of Congruence, so $\triangle U W T \cong \triangle U W V$ by AAS.
53. a. Vert. $\stackrel{s}{ }$ are \cong.
b. Given
c. $\overline{T Q} \cong \overline{Q R}$
d. AAS
54. 55. $\angle V \cong \angle Y$ (given)
1. $\overline{W Z}$ bisects $\angle V W Y$ (given)
2. $\overline{W Z} \cong \overline{W Z}$ (Refl. Prop. \cong)
3. $\triangle V W Z \cong \triangle Y W Z$ (AAS)
4. $\overline{P Q} \perp \overline{Q S}, \overline{R S} \perp \overline{Q S}$ (given)
T is the midpoint of $\overline{P R}$ (given)
$\overline{P T} \cong \overline{R T}$ (def. of midpt.)
$\angle P T Q \cong \angle R T S($ vert. $\angle s \cong)$
$\triangle P Q T \cong \triangle R S T(\mathrm{AAS})$
5. $\triangle P M O \cong \triangle N M O ; A S A 14 . \triangle U T S \cong \triangle R S T ; \mathrm{AAS}$
6. $\triangle Z V Y \cong \triangle W V Y ; \mathrm{AAS}$ 16. D
7. Yes; if $2 \angle s$ of a \triangle are \cong to $2 \angle s$ of another \triangle, then the $3 \mathrm{rd} \angle \mathrm{s}$ are \cong. So, an AAS proof can be rewritten as an ASA proof.
8. $\angle F D E \cong \angle G H I ; \angle D F E \cong \angle H G I$
9. No; you also need one pair of corres. sides \cong.
10. $\triangle M O N \cong \triangle Q O P$ by AAS, since $\angle M O N$ and $\angle Q O P$ are \cong vert. $\angle \mathrm{s}$.
11. $\triangle F G J \cong \triangle H J G$ by AAS, since $\angle F G J \cong \angle H J G$ because when lines are $\|$, then alt. int. \measuredangle are \cong, and $\overline{G J} \cong \overline{G J}$ by the Reflexive Prop. of \cong.
12. $\triangle A E B \cong \triangle B C D$ by ASA, since $\angle E A B \cong \angle D B C$ because $\|$ lines have \cong corr. \measuredangle.
13. $\triangle B D H \cong \triangle F D H$ by ASA since $\angle B D H \cong \angle F D H$ by def. of \angle bis. and $\overline{D H} \cong \overline{D H}$ by the Reflexive Prop. of \cong.
14.

25. $\overline{A B}\|\overline{D C}, \overline{A D}\| \overline{B C}$ (Given), $\angle D A C \cong \angle B C A$ (Alt. Int. $\angle \mathrm{s}$ Thm.) $\angle A C D \cong \angle C A B$ (Alt. Int. $\angle \mathrm{s}$ Thm.), $\overline{A C} \cong \overline{A C}$ (Reflexive Prop.), so $\triangle A B C \cong \triangle C D A$ by ASA.
26. Answers may vary. Sample:

27. a. Check students' work.
b. Answers may vary; most likely ASA.
28. $\triangle A E B \cong \triangle C E D, \triangle B E C \cong \triangle D E A, \triangle A B C \cong \triangle C D A$, $\triangle B A D \cong \triangle D C B$

Answers for Lesson 4-3, pp. 215-218 Exercises (cont.)

$$
\text { 29. } \begin{aligned}
& \triangle A E B \cong \triangle C E D, \triangle B E C \cong \triangle D E A, \triangle A B C \cong \triangle C D A, \\
& \triangle A B D \cong \triangle D C A, \triangle B A D \cong \triangle D C B, \triangle A B D \cong \triangle D C B, \\
& \triangle C B A \cong \triangle D A B, \triangle B C D \cong \triangle A D C
\end{aligned}
$$

30. They are \angle bisectors; ASA.
31. $\frac{13}{20}$
32.

1. SAS; $\triangle K L J \cong \triangle O M N ; \angle K \cong \angle O ; \angle J \cong \angle N ; \overline{J K} \cong \overline{N O}$
2. $\triangle A B D \cong \triangle C B D$ by ASA because $\overline{B D} \cong \overline{B D}$ by Reflexive Prop. of $\cong ; \overline{A B} \cong \overline{C B}$ by СРСТС.
3. $\triangle M O E \cong \triangle R E O$ by SSS because $\overline{O E} \cong \overline{O E}$ by Reflexive Prop. of $\cong ; \angle M \cong \angle R$ by CPCTC.
4. a. SSS
b. CPCTC
5. The \otimes are \cong by SAS so the distance across the sinkhole is 26.5 yd by CPCTC.
6. $\angle \mathrm{SPT}=\angle O P T, \overline{S P} \cong \overline{O P}$ (Given), $\overline{P T} \cong \overline{P T}$ (Reflexive Prop.), $\triangle S P T \cong \triangle O P T$ (SAS), $\angle S=\angle O$ (CPCTC)
7. $\overline{Y T} \cong \overline{Y P}, \angle C \cong \angle R, \angle T \cong \angle P$ (Given), $\angle C Y T \cong \angle R Y P$ (If $2 \angle$ of a \triangle are \cong to $2 \angle s$ of another, the 3 rd $\angle s$ are \cong.), $\triangle C Y T \cong \triangle R Y P(A S A), \overline{C T} \cong \overline{R P}(\mathrm{CPCTC})$
8. $\angle P K L \cong \angle Q K L$ by def. of \angle bisect, and $\overline{K L} \cong \overline{K L}$ by Reflexive Prop. of \cong, so the \uparrow are \cong by SAS.
9. $\overline{K L} \cong \overline{K L}$ by Reflexive Prop. of $\cong ; \overline{P L} \cong \overline{L Q}$ by Def. of \perp bis.; $\angle K L P \cong \angle K L Q$ by Def. of \perp; the © are \cong by SAS.
10. $\angle K L P \cong \angle K L Q$ because all $\mathrm{rt} \stackrel{\mathrm{s}}{ }$ are $\cong ; \overline{K L} \cong \overline{K L}$ by Reflexive Prop. of \cong; and $\angle P K L \cong \angle Q K L$ by def. of bisect; the © are \cong by ASA.
11. $\angle Q P S \cong \angle R S P, \angle Q \cong \angle R$ (Given), $\angle Q S P \cong \angle R P S$ (If 2 $\angle s$ of a \triangle are \cong to $2 \angle s$ of another, the 3 rd $\angle \mathrm{s}$ are \cong.), $\overline{P S} \cong$ $\overline{P S}$ (Reflexive Prop.), $\triangle Q P S \cong \triangle R S P$ (ASA),$\overline{P Q} \cong \overline{S R}$ (CPCTC)
12. Yes; $\triangle A B D \cong \triangle C B D$ by SSS so $\angle A \cong \angle C$ by CPCTC.
13. a. $\overline{A P} \cong \overline{P B} ; \overline{A C} \cong \overline{B C}$
b. The diagram is constructed in such a way that the \mathbb{S} are \cong by SSS. $\angle C P A \cong \angle C P B$ by CPCTC. Since these \angle are \cong and suppl., they are right $\angle s$. Thus, $\overleftrightarrow{C P}$ is \perp to ℓ.
14. Explanations may vary. Sample: The error is in line 4. You cannot say $\overline{A D} \cong \overline{C D}$ by the definition of bisect. $\overline{B D}$ is given to be an angle bisector, not a segment bisector. Replace line 4 with:

$$
\text { 4. } \overline{B D} \cong \overline{B D}
$$

$$
4 . \cong \text { is reflexive }
$$

15. $\overline{B A} \cong \overline{B C}$ is given; $\overline{B D} \cong \overline{B D}$ by the Reflexive Prop. of \cong and since $\overline{B D}$ bisects $\angle A B C, \angle A B D \cong \angle C B D$ by def. of an \angle bisector; thus, $\triangle A B D \cong \triangle C B D$ by SAS; $\overline{A D} \cong \overline{D C}$ by CPCTC so $\overline{B D}$ bisects $\overline{A C}$ by def. of a bis.; $\angle A D B \cong \angle C D B$ by CPCTC and $\angle A D B$ and $\angle C D B$ are suppl.; thus, $\angle A D B$ and $\angle C D B$ are right $\angle \mathrm{s}$ and $\overline{B D} \perp \overline{A C}$ by def. of \perp.
16. Since ℓ bisects $\overline{A B}$ at $C, \overline{A C} \cong \overline{B C} \cdot \overline{P C} \cong \overline{P C}$ by the Reflexive Prop. and $\angle A C P \cong \angle B C P$ because they are rt. \angle. So $\triangle P C A \cong \triangle P C B$ by SAS and $P A=P B$ by CPCTC.
17. $\triangle A B X \cong \triangle A C X$ by SSS, so $\angle B A X \cong \angle C A X$ by CPCTC. Thus $\overrightarrow{A X}$ bisects $\angle B A C$ by the def. of \angle bisector.
18. Prove $\triangle A B E \cong \triangle C D F$ by SAS since $\overline{A E} \cong \overline{F C}$ by subtr.
19. Prove $\triangle K J M \cong \triangle Q P M$ by ASA since $\angle P \cong \angle J$ and $\angle K \cong \angle Q$ by alt. int. $\angle s$ are \cong.
20. 21. $\overline{P R}\|\overline{M G} ; \overline{M P}\| \overline{G R}$ (Given)
1. Draw $\overline{P G}$. (2 pts. determine a line.)
2. $\angle R P G \cong \angle P G M$ and $\angle R G P \cong \angle G P M$ (If $\|$ lines, then alt. int. $\angle \mathrm{s}$ are \cong.)
3. $\triangle P G M \cong \triangle G P R$ (ASA). A similar proof can be written if diagonal $\overline{R M}$ is drawn.
4. Since $\triangle P G M \cong \triangle G P R$ (or $\triangle P M R \cong \triangle G R M$), then $\overline{P R} \cong \overline{M G}$ and $\overline{M P} \cong \overline{G R}$ by СРСТС.
5. $\overline{V X}$; Conv. of the Isosc. $\triangle \mathrm{Thm}$.
6. $\overline{U W}$; Conv. of the Isosc. $\triangle \mathrm{Thm}$.
7. $\overline{V Y} ; V T=V X$ (Ex. 1) and $U T=Y X$ (Ex. 2), so $V U=V Y$ by the Subtr. Prop. of $=$.
8. Answers may vary. Sample: $\angle V U Y ; \measuredangle$ opp. \cong sides are \cong.
9. $x=80 ; y=40$
10. $x=40 ; y=70$
11. $x=38 ; y=4$
12. $150 ; 15$
13. $24,48,72,96,120$
14. 64
15. $2 \frac{1}{2}$
16. 42
17. 35
18. 70
19. a. $\overline{K M}$
b. $\overline{K M}$
c. By construction
d. Def. of segment bisector
e. Reflexive Prop. of \cong
f. SSS
g. CPCTC
20. a. $\overline{R S}$
b. $\overline{R S}$

Statements	Reasons
1. $\overline{R S}$ bisects $\angle P R Q$	1. Given
2. $\angle \mathrm{PRS} \cong \angle \mathrm{QRS}$	2. Def. of bisector
3. $\angle P \cong \angle Q$	3. Given
4. $\overline{R S} \cong \overline{R S}$	4. Reflexive Prop. of \cong
5. $\triangle P R S \cong \triangle Q R S$	5. AAS
6. $\overline{P R} \cong \overline{Q R}$	6. CPCTC

17. a.

$$
30,30,120
$$

b. $5 ; 30,60,90,120,150$
18. Answers may vary. Sample: Corollary to Thm. 4-3:

Since $\overline{X Y} \cong \overline{Y Z}, \angle X \cong \angle Z$ by Thm. 4-3. $\overline{Y Z} \cong \overline{Z X}$, so $\angle Y \cong \angle X$ by Thm. 4-3 also. By the Trans. Prop., $\angle Y \cong \angle Z$, so $\angle X \cong \angle Y \cong \angle Z$. Corollary to Thm. 4-4: Since $\angle X \cong \angle Z$, $\overline{X Y} \cong \overline{Y Z}$ by Thm. 4-4. $\angle Y \cong \angle X$, so $\overline{Y Z} \cong \overline{Z X}$ by
Thm. 4-4 also. By the Trans. Prop., $\overline{X Y} \cong \overline{Z X}$, so
$\overline{X Y} \cong \overline{Y Z} \cong \overline{Z X}$.
19. C
20. $x=60 ; y=30$
21. $x=36 ; y=36$
22. $x=30 ; y=120$
23. Two sides of a \triangle are \cong if and only if the \lfloor opp. those sides are \cong.
24. $80,80,20 ; 80,50,50$
25. a. isosc. ©
b. $900 \mathrm{ft} ; 1100 \mathrm{ft}$
c. The tower is the \perp bis. of the base of each \triangle.
26. No; the \triangle can be positioned in ways such that the base is not on the bottom.
27. 45 ; they are $=$ and have sum 90 .
28. $\angle A \cong \angle D$ by the Isos. \triangle Thm. $\triangle A B E \cong \triangle D C E$ by SAS.
29. $\overline{A C} \cong \overline{C B}$ and $\angle A C D \cong \angle D C B$ are given. $\overline{C D} \cong \overline{C D}$ by the Refl. Prop. of \cong, so $\triangle A C D \cong \triangle B C D$ by SAS. So $\overline{A D} \cong \overline{D B}$ by CPCTC, and $\overline{C D}$ bisects $\overline{A B}$. Also $\angle A D C \cong \angle B D C$ by CPCTC, $m \angle A D C+m \angle B D C=180$ by \angle Add. Post., so $m \angle A D C=m \angle B D C=90$ by the Subst. Prop. So $\overline{C D}$ is the \perp bis. of $\overline{A B}$.
30. $m=36 ; n=27$
31. $m=60 ; n=30$
32. $m=20 ; n=45$
33. $(0,0),(4,4),(-4,0)$,
34. $(5,0) ;(0,5) ;(-5,5)$;
$(0,-4),(8,4),(4,8)$
$(5,-5) ;(0,10) ;(10,0)$
35. $(5,3) ;(2,6) ;(2,9) ;(8,3) ;(-1,6) ;(5,0)$
36. a. 25
b. $40 ; 40 ; 100$
c. Obtuse isosc. $\triangle ; 2$ of the \measuredangle are \cong and one \angle is obtuse.

Answers for Lesson 4-5, pp. 230-233 Exercises (cont.)

37. The \perp bis. of the base of an isosc. \triangle is the bis. of the vertex \angle; given isosc. $\triangle A B C$ with \perp bis. $\overline{C D}, \angle A D C \cong \angle B D C$ and $\overline{A D} \cong \overline{D B}$ by def. of \perp bis. Since $\overline{C D} \cong \overline{C D}$ by Refl. Prop., $\triangle A C D \cong \triangle B C D$ by SAS. So $\angle A C D \cong \angle B C D$ by CPCTC, and $\overline{C D}$ bisects $\angle A C B$.
38. a. 5
b.

16

39. $0<$ measure of base $\angle<45$
40. $45<$ measure of base $\angle<90$

1. $\triangle A B C \cong \triangle D E F$ by HL. Both \S are rt. §, $\overline{A C} \cong \overline{D F}$, and $\overline{C B} \cong \overline{F E}$.
2. $\triangle L M P \cong \triangle O M N$ by HL. Both \triangle are rt. © because vert. $\angle \mathrm{s}$ are $\cong ; \overline{L P} \cong \overline{N O}$, and $\overline{L M} \cong \overline{O M}$.
3. $\angle T$ and $\angle Q$ are rt. $\angle ⺀$.
4. $\overline{R X} \cong \overline{R T}$ or $\overline{X V} \cong \overline{T V}$
5. a. $\cong \operatorname{suppl} . \angle \mathrm{s} \operatorname{are} \mathrm{rt}$. $\angle \mathrm{s}$
b. Def. of rt. \triangle
c. Given
d. Reflexive Prop. of \cong
e. HL
6. Given that $\angle D$ and $\angle B$ are right $\angle s, \triangle A D C$ and $\triangle C B A$ are right \otimes by the def. of rt. $\triangle . \overline{A C} \cong \overline{A C}$ by the Reflexive Prop. of \cong, and $\overline{A D} \cong \overline{C B}$ is given. Therefore, $\triangle A D C \cong \triangle C B A$ by HL.
7. a. Given
b. Def. of \perp
c. $\triangle M L J$ and $\triangle K J L$ are rt. $\mathbb{\triangle}$.
d. Given
e. $\overline{L J} \cong \overline{L J}$
f. HL
8. Given that $\overline{H V} \perp \overline{G T}$ and $\overline{G H} \cong \overline{T V}$, then $\triangle I G H$ and $\triangle I T V$ are right \triangle by the def. of rt. \triangle. It is given that I is the midpoint of $\overline{H V}$, so $\overline{H I} \cong \overline{V I}$ by the def. of midpt. Therefore, $\triangle I G H \cong \triangle I T V$ by the HL Thm.
9. HL; each rt. \triangle has a \cong hyp. and side.
10. $x=3 ; y=2$
11. $x=-1 ; y=3$
12. whether the $7-y d$ side is the hyp. or a leg
13. It is given that $\overline{R S} \cong \overline{T U}, \overline{R S} \perp \overline{S T}, \overline{T U} \perp \overline{U V}$, and that T is the midpoint of $\overline{R V} . \triangle R S T$ and $\triangle T U V$ are both right triangles by the definition of a right triangle. $\overline{R T} \cong \overline{T V}$ by the definition of midpoint. Therefore, $\triangle R S T \cong \triangle T U V$ by HL.
14. 15. $\overline{J M} \cong \overline{W P}$ (given)
1. $\overline{J P} \| \overline{M W}$ (given)
2. $\overline{J P} \perp \overline{P M}$ (given)
3. $\triangle J P M$ and $\triangle P M W$ are rt. \triangleq (def. of rt. \triangle)
4. $\overline{P M} \cong \overline{P M}$ (Reflex. Prop. of \cong)
5. $\triangle J P M \cong \triangle P M W(\mathrm{HL})$
6. $\overline{P S} \cong \overline{P T}$ so $\angle S \cong \angle T$ by the Isosc. \triangle Thm.
$\angle P R S \cong \angle P R T . \triangle P R S \cong \triangle P R T$ by AAS.
7.

17.

18.

19.

20. 1. $\overline{E B} \cong \overline{D B} ; \angle A$ and $\angle C$ are rt. \angle. (Given)
2. $\triangle B E A$ and $\triangle B D C$ are rt. ©. (Def. of rt. \triangle)
3. B is the midpt. of $\overline{A C}$. (Given)
4. $\overline{A B} \cong \overline{B C}$ (Def. of midpt.)
5. $\triangle B E A \cong \triangle B D C$ (HL)
21. 1. $\overline{L O}$ bisects $\angle M L N, \overline{O M} \perp \overline{L M}, \overline{O N} \perp \overline{L N}$, (Given)
2. $\angle M$ and $\angle N$ are rt. \triangle (Def. of \perp)
3. $\angle M L O \cong \angle N L O$ (Def. of \angle bis.)
4. $\angle M \cong \angle N$ (All rt. $₫$ are \cong.)
5. $\overline{L O} \cong \overline{L O}$ (Reflexive Prop. of \cong)
6. $\triangle L M O \cong \triangle L N O$ (AAS)
22. Answers may vary. Sample: Measure 2 sides of the Δ formed by the amp. and the platform's corner. Since the \mathbb{A} will be \cong by HL or SAS, the $₫$ are the same.
23. a.

									2

b. slope of $\overline{D G}=-1$; slope of $\overline{G F}=-1$; slope of $\overline{G E}=1$
c. $\angle E G D$ and $\angle E G F$ are rt. $\angle \mathrm{s}$.
© Pearson Education, Inc., publishing as Pearson Prentice Hall. All rights reserved.
d. $D E=\sqrt{26} ; F E=\sqrt{26}$
e. $\triangle E G D \cong \triangle E G F$ by HL. Both $₫$ are rt. \otimes, $\overline{D E} \cong \overline{F E}$, and $\overline{E G} \cong \overline{E G}$.
24. An HA Thm. is the same as AAS with AAS corr. to the rt. \angle, an acute \angle, and the hyp.
25. Since $\overline{B E} \perp \overline{E A}$ and $\overline{B E} \perp \overline{E C}, \triangle A E B$ and $\triangle C E B$ are both rt . ©. $\overline{A B} \cong \overline{B C}$ because $\triangle A B C$ is equilateral, and $\overline{B E} \cong \overline{B E} . \triangle A E B \cong \triangle C E B$ by HL.
26. No; $\overline{A B} \cong \overline{C B}$ because $\triangle A E B \cong \triangle C E B$, but $\overline{A C}$ doesn't have to be \cong to $\overline{A B}$ or to $\overline{C B}$.

1. $\angle M$
2. $\overline{D F}$
3. $\overline{X Y}$
4.

6

7. a. Given
b. Reflexive Prop. of \cong
c. Given
d. AAS
e. СРСТС
8. Plan: Two pairs of sides are \cong. The third sides are the same segment. Use SSS.
Proof: It is given that $\overline{R S} \cong \overline{U T}$ and $\overline{R T} \cong \overline{U S} . \overline{S T} \cong \overline{S T}$ by the Reflex. Prop. of $\cong \triangle R S T \cong \triangle U T S$ by SSS.
9. Plan: Two sides and two angles are \cong. The other included sides are the same segment. Use SAS.

Proof: It is given that $\overline{Q D} \cong \overline{U A}$ and $\angle Q D A \cong \angle U A D$. $\overline{D A} \cong \overline{D A}$ by the Reflex. Prop. of $\cong . \triangle Q D A \cong \triangle U A D$ by SAS.
10. $\triangle Q E T \cong \triangle Q E U$ by SAS if $\overline{Q T} \cong \overline{Q U} . \overline{Q T}$ and $\overline{Q U}$ are corr. parts of $\triangle Q T B$ and $\triangle Q U B$ which are \cong by ASA.

Answers for Lesson 4-7, pp. 243-245 Exercises (cont.)

11. $\triangle A D C \cong \triangle E D G$ by ASA if $\angle A \cong \angle E . \angle A$ and $\angle E$ are corr. parts in $\triangle A D B$ and $\triangle E D F$, which are \cong by SAS.

12-15. Answers may vary. Samples are given.
12.

13.

14. a.

b.

15. a.

b.

16. B
17. 1. $\overline{A C} \cong \overline{E C} ; \overline{C B} \cong \overline{C D}$ (Given)
2. $\angle C \cong \angle C$ (Reflexive Prop. of \cong)
3. $\triangle A C D \cong \triangle E C B$ (SAS)
4. $\angle A \cong \angle E$ (CPCTC)
18. $\overline{P Q} \cong \overline{R Q}$ and $\angle P Q T \cong \angle R Q T$ by Def. of \perp bisector. $\overline{Q T} \cong \overline{Q T}$ so $\triangle P Q T \cong \triangle R Q T$ by SAS. $\angle P \cong \angle R$ by CPCTC. $\overline{Q T}$ bisects $\angle V Q S$ so $\angle V Q T \cong \angle S Q T$ and $\angle P Q T$ and $\angle R Q T$ are both rt . \angle. So $\angle V Q P \cong \angle S Q R$ since they are compl. of $\cong \angle \Delta . \triangle P Q V \cong \triangle R Q S$ by ASA so $\overline{Q V} \cong \overline{Q S}$ by СРСТС.
19. $m \angle 1=56 ; m \angle 2=56 ; m \angle 3=34 ; m \angle 4=90 ; m \angle 5=22$; $m \angle 6=34 ; m \angle 7=34 ; m \angle 8=68 ; m \angle 9=112$
20. $\triangle A B C \cong \triangle F C G$; ASA
21. $\overline{T D} \cong \overline{R O}$ if $\triangle T D I \cong \triangle R O E$ by AAS. $\angle T I D \cong \angle R E O$ if $\triangle T E I \cong \triangle R I E . \triangle T E I \cong \triangle R I E$ by SSS.
22. $\overline{A E} \cong \overline{D E}$ if $\triangle A E B \cong \triangle D E C$ by AAS. $\overline{A B} \cong \overline{D C}$ and $\angle A \cong \angle D$ since they are corr. parts of $\triangle A B C$ and $\triangle D C B$, which are \cong by HL.
23. a. $\overline{A D} \cong \overline{B C} ; \overline{A B} \cong \overline{D C} ; \overline{A E} \cong \overline{E C} ; \overline{D E} \cong \overline{E B}$
b. Use $\overline{D B} \cong \overline{D B}$ (refl.) and alt. int. Is to show
$\triangle A D B \cong \triangle C B D(\mathrm{ASA}) . \overline{A B} \cong \overline{D C}$ and $\overline{A D} \cong \overline{B C}$ (CPCTC). $\triangle A E B \cong \triangle C E D$ (ASA) and $\triangle A E D \cong$ $\triangle C E B$ (ASA). Then $\overline{A E} \cong \overline{E C}$ and $\overline{D E} \cong \overline{E B}$ (СРСТС).
24. $\triangle A C E \cong \triangle B C D$ by ASA; $\overline{A C} \cong \overline{B C}, \angle A \cong \angle B$ (Given) $\angle C \cong \angle C$ (Reflexive Prop. of $\cong) \triangle A C E \cong \triangle B C D$ (ASA)
25. $\triangle W Y X \cong \triangle Z X Y$ by HL; $\overline{W Y} \perp \overline{Y X}, \overline{Z X} \perp \overline{Y X}, \overline{W X} \cong \overline{Z Y}$ (Given) $\angle W Y X$ and $\angle Z X Y$ are rt. \angle s (Def. of \perp) $\overline{X Y} \cong \overline{X Y}$ (Reflexive Prop. of $\cong) ~ \triangle W Y X \cong \triangle Z X Y$ (HL)

