1.	$\angle CAB \cong \angle DAB;$		2. $\angle GEF \cong \angle JHI;$			
	$\angle C \cong \angle D;$			$\angle GFE \cong \angle JIH;$		
	$\angle ABC \cong \angle ABD;$			$\angle EGF \cong \angle HJI;$		
	$\overline{AC} \cong \overline{AD}; \overline{AB} \cong \overline{AB};$		$\overline{GE} \cong \overline{JH}; \overline{EF} \cong \overline{HI};$			
	$CB \cong DB$			$FG \cong IJ$		
3.	\overline{BK}	4. \overline{CM}	5.	\overline{ML}	6.	$\angle B$
7.	$\angle C$	8. ∠ <i>J</i>	9.	$\triangle KJB$	10.	$\triangle CLM$
11.	$\triangle JBK$	12. △ <i>MCL</i>	13.	E, K, G, N		
14.	$\frac{\overline{PO}}{LY} \cong \frac{\overline{SI};}{DE};$	$\overline{\frac{DL}{PY}} \cong \overline{ID};$ $\overline{PY} \cong \overline{SE}$	15.	$\angle P \cong \angle S$ $\angle L \cong \angle L$;∠0);∠Y	$P \cong \angle I;$ $Z \cong \angle E$
16.	33 in.	17. 54 in.	18.	105	19.	77
20.	36 in.	21. 34 in.	22.	75	23.	103

- **24.** Yes; $\angle RTK \cong \angle UTK$, $\angle R \cong \angle U$ (Given) $\angle RKT \cong \angle UKT$ If two $\underline{\land}$ of a $\underline{\land}$ are \cong to two $\underline{\land}$ of another \triangle , the third $\underline{\land}$ are \cong . $\overline{TR} \cong \overline{TU}$, $\overline{RK} \cong \overline{UK}$ (Given) $\overline{TK} \cong \overline{TK}$ (Reflexive Prop. of \cong) $\triangle TRK \cong \triangle TUK$ (Def. of $\cong \triangle$)
- **25.** No; the corr. sides are not \cong .

26. No; corr. sides are not necessarily \cong .

27. Yes; all corr. sides and \angle s are \cong .

28. $\overline{AB} \cong \overline{DC}, \overline{BC} \cong \overline{AD}$ are given. $\overline{AC} \cong \overline{AC}$ by the Refl. Prop. $\angle B \cong \angle D$ is given, and by the Alt. Int. \angle Thm., $\angle BCA \cong \angle DAC$ and $\angle BAC \cong \angle DCA$. So $\triangle ABC \cong \triangle CDA$ by the def. of $\cong \triangle$.

- **29.** B
- **30.** x = 15; t = 2 **31.** 5
- **32.** $m \angle A = m \angle D = 20$ **33.** $m \angle B = m \angle E = 21$
- **34.** BC = EF = 8 **35.** AC = DF = 19
- **36.** Answers may vary. Sample: It is important that $PACH \cong OLDE$ for the patch to completely fill the hole.
- **37.** Answers may vary. Sample: She could arrange them in a neat pile and pull out the ones of like sizes.

$\triangle JYB \cong \triangle XCH$	39. $\triangle BCE \cong \triangle ADE$
$\triangle TPK \cong \triangle TRK$	41. $\triangle JLM \cong \triangle NRZ;$ $\land ILM \simeq \land ZPN$
	$\Box J L M = \Box L M N$
	$\triangle JYB \cong \triangle XCH$ $\triangle TPK \cong \triangle TRK$

- **42.** Answers may vary. Sample: The die is a mold that is used to make items that are all the same size.
- **43.** Answers may vary. Sample: $\triangle TKR \cong \triangle MJL$: $\overline{TK} \cong \overline{MJ}; \overline{TR} \cong \overline{ML}; \overline{KR} \cong \overline{JL}; \angle TKR \cong \angle MJL;$ $\angle TRK \cong \angle MLJ; \angle KTR \cong \angle JML$
- **44.** $\overline{PR} \cong \overline{TQ}, \overline{PS} \cong \overline{QS}$ (Given), $\overline{RS} \cong \overline{TS}$ (def. of bisect), $\angle PSR \cong \angle QST$ (Vert. \measuredangle are \cong .), $\angle SPR \cong \angle SQT$ (Alt. Int. \angle Thm.), $\angle PRS \cong \angle QTS$ (If 2 \measuredangle of a \triangle are \cong to 2 \measuredangle of another \triangle , the third \measuredangle are \cong .) So $\triangle PRS \cong \triangle QTS$ by the def. of $\cong \triangle$.
- **45.** $\angle A \cong \angle D, \angle B \cong \angle E$ (Given), $m \angle A + m \angle B + m \angle C =$ $180, m \angle D + m \angle E + m \angle F = 180$ ($\triangle -\angle$ Sum Thm.), $m \angle A +$ $m \angle B + m \angle C = m \angle D + m \angle E + m \angle F$ (Subst. Prop.), $m \angle D$ $+ m \angle E + m \angle C = m \angle D + m \angle E + m \angle F$ (Subst. Prop.), $m \angle C = m \angle F$ (Subtr.)

46.
$$KL = 4; LM = 3; KM = 5$$

47. 2; either (3, 1) or (3, −7)

48. a. 15

Geometry

- 1. a. Given
 - **b.** Reflexive
 - c. $\triangle JKM$
 - **d.** $\triangle LMK$
- **2.** $\overline{IE} \cong \overline{GH}, \overline{EF} \cong \overline{HF}$: given. *F* is the midpoint of \overline{GI} ; given. $\overline{IF} \cong \overline{FG}$ by the definition of midpoint. Therefore, $\triangle EFI \cong \triangle HFG$ by SSS.
- **3.** It is given that $\overline{WZ} \cong \overline{ZS} \cong \overline{SD} \cong \overline{DW}$. $\overline{ZD} \cong \overline{ZD}$ by the Reflexive Property of Congruence. Therefore, $\triangle WZD \cong \triangle SDZ$ by SSS.
- **4.** Yes; $OB \cong OB$ by Refl. Prop.; $\angle BOP \cong \angle BOR$ since all rt. \triangle are \cong ; $\overline{OP} \cong \overline{OR}$ (Given); the \triangle are \cong by SAS.
- 5. Yes; $\overline{AC} \cong \overline{DB}$ (Given); $\overline{AE} \cong \overline{CE}$ and $\overline{BE} \cong \overline{DE}$ (Def. of midpt.); $\angle AEB \cong \angle CED$ (vert. \measuredangle are \cong) $\triangle AEB \cong \triangle CED$ by SAS.
- 6. No; either $\overline{PQ} \cong \overline{QS}$ is needed for SSS, or $\angle T \cong \angle R$ for SAS.
- 7. Yes; since $\overline{AC} \cong \overline{AC}$ by the Refl. Prop., the \triangle are \cong by SAS.
- 8. $\overline{LG} \cong \overline{MN}$ 9. $\angle T \cong \angle V \text{ or } \overline{RS} \cong \overline{WU}$
- **10.** $\overline{WV}, \overline{VU}$ **11.** $\angle W$
- **12.** $\angle U, \angle V$ **13.** \overline{WU}
- 14. $\angle X$ 15. $\overline{XZ}, \overline{YZ}$
- **16.** Yes; $\triangle ACB \cong \triangle EFD$ by SAS.
- **17.** Yes; $\triangle PVQ \cong \triangle STR$ by SSS.

- **18.** $\angle AXN \cong \angle GXR$ (Vert. \measuredangle are \cong .), $\overline{AX} \cong \overline{GX}$ and $\overline{NX} \cong \overline{RX}$ (def. of midpoint), so $\triangle ANX \cong \triangle GRX$ by SAS.
- **19.** A
- **20.** $\triangle ANG \cong \triangle RWT$; SAS
- **21.** $\triangle KLJ \cong \triangle MON; SSS$
- **22.** Not possible; need $\angle H \cong \angle P$ or $\overline{DY} \cong \overline{TK}$.
- **23.** $\triangle JEF \cong \triangle SVF$ or $\triangle JEF \cong \triangle SFV$; SSS
- **24.** $\triangle BRT \cong \triangle BRS$; SSS **25.** $\triangle PQR \cong \triangle NMO$; SAS
- **26.** GK bisects $\angle JGM$, so $\angle JGK \cong \angle MGK$ (def. of bisect.). $\overline{GJ} \cong \overline{GM}$ (given), and $\overline{GK} \cong \overline{GK}$ (Reflexive Prop. of \cong). $\triangle GJK \cong \triangle GMK$ by SAS.
- **27.** \overline{AE} and \overline{BD} bisect each other, so $\overline{AC} \cong \overline{CE}$ and $\overline{BC} \cong \overline{CD}$. $\angle ACB \cong \angle DCE$ because vert. \measuredangle are \cong . $\triangle ACB \cong \triangle ECD$ by SAS.
- **28.** No; even though the \angle s are \cong , the sides may not be.
- **29.** No; you would need $\angle H \cong \angle K$ or $GI \cong JL$.
- **30.** yes; SAS
- 31.

- **33. a**-**b**. Answers may vary. Sample:
 - **a.** wallpaper designs; ironwork on a bridge; highway warning signs
 - b. ≅ ▲ produce a well-balanced, symmetric appearance. In construction, ≅ ▲ enhance designs. Highway warning signs are more easily identified if they are ≅.
- **34.** $\angle ISP \cong \angle PSO; \triangle ISP \cong \triangle OSP$ by SAS.
- **35.** $IP \cong PO; \triangle ISP \cong \triangle OSP$ by SSS.
- **36.** Yes; $\triangle ADB \cong \triangle CBD$ by SAS; $\angle ADB \cong \angle DBC$ because if \parallel lines, then alt. int. \measuredangle are \cong .
- **37.** Yes; $\triangle ABC \cong \triangle CDA$ by SAS; $\angle DAC \cong \angle ACB$ because if \parallel lines, then alt. int. \measuredangle are \cong .
- **38.** 1. $\overline{FG} \parallel \overline{KL}$ (Given)
 - **2.** $\angle GFK \cong \angle FKL$ (If \parallel lines, then alt. int. \triangle are \cong .)
 - **3.** $\overline{FG} \cong \overline{KL}$ (Given)
 - **4.** $\overline{FK} \cong \overline{FK}$ (Reflexive Prop. of \cong)
 - **5.** $\triangle FGK \cong \triangle KLF$ (SAS)
- **39.** $AM \cong MB$ because *M* is the midpt. of $AB. \angle B \cong \angle AMC$ because all right \triangle s are \cong . $\overline{CM} \cong \overline{DB}$ is given. $\triangle AMC \cong \triangle MBD$ by SAS.
- **40.** HG = HK + KG and KL = KG + GL by the Seg. Add. Post. Since HK = GL, use subst. twice to get HG = GL + KG = KL. So $\overline{HG} \cong \overline{KL}$ and the & are \cong by SSS.
- **41.** $\triangle MNO \cong \triangle OLM$ by SAS. Therefore $\angle NMO \cong \angle LOM$ by def. of $\cong \triangle$, so $\overline{MN} \parallel \overline{LO}$ by the Conv. of the Alt. Int. \triangle Thm.

.....

42. Answers may vary. Sample:

- **43.** a. No; the angles are not necessarily \cong .
 - **b.** No; sample explanation: the <u>is</u> can be changed without changing the side lengths.
 - c. Answers may vary. Sample: a diagonal

2. $\triangle ACB \cong \triangle EFD$

- **1.** $\triangle PQR \cong \triangle VXW$
- **3.** \overline{RS} **4.** $\angle N$ and $\angle O$
- 5. a. Reflexive

b. ASA

- **6.** $\angle BAC \cong \angle DAC$ (given)
 - $\overline{AC} \perp \overline{BD}$ (given)
 - $\overline{AC} \cong \overline{AC}$ (Reflex. Prop. \cong)
 - $\angle DCA \cong \angle BCA \text{ (rt. } \measuredangle \text{ are } \cong)$
 - $\triangle ABC \cong \triangle ADC \text{ (ASA)}$
- 7. $\overline{QR} \cong \overline{TS}$ (given)
 - $\overline{QR} \parallel \overline{ST}$ (given)
 - $\angle TQR \cong \angle QTS$ (Alt. Int. $\angle s$ Thm.)
 - $\angle QTR \cong \angle TQS$ (Alt. Int. $\angle s$ Thm.)
 - $\triangle QRT \cong \triangle TSQ \text{ (AAS)}$
- **8.** a. ∠*UWV*
 - **b.** \overline{UW}
 - **c.** right
 - d. Reflexive
- **9.** It is given that $\angle UWT$ and $\angle UWV$ are right \measuredangle and that $\angle T \cong \angle V. \angle UWT \cong \angle UWV$ since all right \measuredangle are congruent. $\overline{UW} \cong \overline{UW}$ by the Reflexive Property of Congruence, so $\triangle UWT \cong \triangle UWV$ by AAS.

10. a. Vert. \angle s are \cong . **b.** Given **c.** $TO \cong OR$ d. AAS **11.** 1. $\angle V \cong \angle Y$ (given) 2. WZ bisects $\angle VWY$ (given) 3. $\overline{WZ} \cong \overline{WZ}$ (Refl. Prop. \cong) 4. $\triangle VWZ \cong \triangle YWZ$ (AAS) **12.** $\overline{PQ} \perp \overline{QS}, \overline{RS} \perp \overline{QS}$ (given) T is the midpoint of PR (given) $\overline{PT} \cong \overline{RT}$ (def. of midpt.) $\angle PTQ \cong \angle RTS \text{ (vert. } \measuredangle \cong)$ $\triangle POT \cong \triangle RST (AAS)$ **13.** $\triangle PMO \cong \triangle NMO$; ASA **14.** $\triangle UTS \cong \triangle RST$; AAS **15.** $\triangle ZVY \cong \triangle WVY$; AAS **16.** D **17.** Yes; if $2 \leq 0$ of a \triangle are \cong to $2 \leq 0$ of another \triangle , then the 3rd ≤ 0 are \cong . So, an AAS proof can be rewritten as an ASA proof. **18.** $\angle FDE \cong \angle GHI; \angle DFE \cong \angle HGI$

- **19.** No; you also need one pair of corres. sides \cong .
- **20.** $\triangle MON \cong \triangle QOP$ by AAS, since $\angle MON$ and $\angle QOP$ are \cong vert. \measuredangle s.

- **21.** $\triangle FGJ \cong \triangle HJG$ by AAS, since $\angle FGJ \cong \angle HJG$ because when lines are \parallel , then alt. int. \triangle are \cong , and $\overline{GJ} \cong \overline{GJ}$ by the Reflexive Prop. of \cong .
- **22.** $\triangle AEB \cong \triangle BCD$ by ASA, since $\angle EAB \cong \angle DBC$ because \parallel lines have \cong corr. \measuredangle s.
- **23.** $\triangle BDH \cong \triangle FDH$ by ASA since $\angle BDH \cong \angle FDH$ by def. of \angle bis. and $\overline{DH} \cong \overline{DH}$ by the Reflexive Prop. of \cong .

- **25.** $\overline{AB} \parallel \overline{DC}, \overline{AD} \parallel \overline{BC}$ (Given), $\angle DAC \cong \angle BCA$ (Alt. Int. $\underline{ACD} \cong \angle CAB$ (Alt. Int. $\underline{ACD} \cong \overline{AC}$ (Reflexive Prop.), so $\triangle ABC \cong \triangle CDA$ by ASA.
- **26.** Answers may vary. Sample:

- **27. a.** Check students' work.
 - **b.** Answers may vary; most likely ASA.
- **28.** $\triangle AEB \cong \triangle CED, \triangle BEC \cong \triangle DEA, \triangle ABC \cong \triangle CDA, \triangle BAD \cong \triangle DCB$

- **29.** $\triangle AEB \cong \triangle CED, \triangle BEC \cong \triangle DEA, \triangle ABC \cong \triangle CDA, \\ \triangle ABD \cong \triangle DCA, \triangle BAD \cong \triangle DCB, \triangle ABD \cong \triangle DCB, \\ \triangle CBA \cong \triangle DAB, \triangle BCD \cong \triangle ADC$
- **30.** They are \angle bisectors; ASA.
- **31.** $\frac{13}{20}$

- **1.** SAS; $\triangle KLJ \cong \triangle OMN$; $\angle K \cong \angle O$; $\angle J \cong \angle N$; $JK \cong NO$
- **2.** $\triangle ABD \cong \triangle CBD$ by ASA because $\overline{BD} \cong \overline{BD}$ by Reflexive Prop. of \cong ; $\overline{AB} \cong \overline{CB}$ by CPCTC.
- **3.** $\triangle MOE \cong \triangle REO$ by SSS because $\overline{OE} \cong \overline{OE}$ by Reflexive Prop. of \cong ; $\angle M \cong \angle R$ by CPCTC.
- **4.** a. SSS

b. CPCTC

- 5. The \triangle are \cong by SAS so the distance across the sinkhole is 26.5 yd by CPCTC.
- **6.** \angle SPT = $\angle OPT$, $\overline{SP} \cong \overline{OP}$ (Given), $\overline{PT} \cong \overline{PT}$ (Reflexive Prop.), $\triangle SPT \cong \triangle OPT$ (SAS), $\angle S = \angle O$ (CPCTC)
- 7. $\overline{YT} \cong \overline{YP}, \angle C \cong \angle R, \angle T \cong \angle P$ (Given), $\angle CYT \cong \angle RYP$ (If 2 \leq of a \triangle are \cong to 2 \leq of another, the 3rd \leq are \cong .), $\triangle CYT \cong \triangle RYP$ (ASA), $\overline{CT} \cong \overline{RP}$ (CPCTC)
- **8.** $\angle PKL \cong \angle QKL$ by def. of \angle bisect, and $\overline{KL} \cong \overline{KL}$ by Reflexive Prop. of \cong , so the \triangle are \cong by SAS.
- **9.** $\overline{KL} \cong \overline{KL}$ by Reflexive Prop. of \cong ; $\overline{PL} \cong \overline{LQ}$ by Def. of \perp bis.; $\angle KLP \cong \angle KLQ$ by Def. of \perp ; the \triangle are \cong by SAS.
- **10.** $\angle KLP \cong \angle KLQ$ because all rt \triangle s are \cong ; $KL \cong KL$ by Reflexive Prop. of \cong ; and $\angle PKL \cong \angle QKL$ by def. of bisect; the \triangle s are \cong by ASA.
- **11.** $\angle QPS \cong \angle RSP, \angle Q \cong \angle R$ (Given), $\angle QSP \cong \angle RPS$ (If 2 $\underline{\land}$ of a \triangle are \cong to 2 $\underline{\land}$ of another, the 3rd $\underline{\land}$ are \cong .), $\overline{PS} \cong \overline{PS}$ (Reflexive Prop.), $\triangle QPS \cong \triangle RSP$ (ASA), $\overline{PQ} \cong \overline{SR}$ (CPCTC)

- **12.** Yes; $\triangle ABD \cong \triangle CBD$ by SSS so $\angle A \cong \angle C$ by CPCTC.
- **13.** a. $\overline{AP} \cong \overline{PB}; \overline{AC} \cong \overline{BC}$
 - **b.** The diagram is constructed in such a way that the \triangle are \cong by SSS. $\angle CPA \cong \angle CPB$ by CPCTC. Since these \triangle are \cong and suppl., they are right \triangle . Thus, \overrightarrow{CP} is \perp to ℓ .
- 14. Explanations may vary. Sample: The error is in line 4. You cannot say $\overline{AD} \cong \overline{CD}$ by the definition of bisect. \overline{BD} is given to be an angle bisector, not a segment bisector. Replace line 4 with:
 - 4. $\overline{BD} \cong \overline{BD}$ 4. \cong is reflexive.
- **15.** $BA \cong BC$ is given; $BD \cong BD$ by the Reflexive Prop. of \cong and since \overline{BD} bisects $\angle ABC$, $\angle ABD \cong \angle CBD$ by def. of an \angle bisector; thus, $\triangle ABD \cong \triangle CBD$ by SAS; $\overline{AD} \cong \overline{DC}$ by CPCTC so \overline{BD} bisects \overline{AC} by def. of a bis.; $\angle ADB \cong \angle CDB$ by CPCTC and $\angle ADB$ and $\angle CDB$ are suppl.; thus, $\angle ADB$ and $\angle CDB$ are right $\angle s$ and $\overline{BD} \perp \overline{AC}$ by def. of \perp .
- **16.** Since ℓ bisects \overline{AB} at $C, \overline{AC} \cong \overline{BC}, \overline{PC} \cong \overline{PC}$ by the Reflexive Prop. and $\angle ACP \cong \angle BCP$ because they are rt. $\angle s$. So $\triangle PCA \cong \triangle PCB$ by SAS and PA = PB by CPCTC.
- **17.** $\triangle ABX \cong \triangle ACX$ by SSS, so $\angle BAX \cong \angle CAX$ by CPCTC. Thus \overrightarrow{AX} bisects $\angle BAC$ by the def. of \angle bisector.
- **18.** Prove $\triangle ABE \cong \triangle CDF$ by SAS since $AE \cong FC$ by subtr.
- **19.** Prove $\triangle KJM \cong \triangle QPM$ by ASA since $\angle P \cong \angle J$ and $\angle K \cong \angle Q$ by alt. int. \measuredangle are \cong .

- **20.** 1. $\overline{PR} \parallel \overline{MG}; \overline{MP} \parallel \overline{GR}$ (Given)
 - **2.** Draw \overline{PG} . (2 pts. determine a line.)
 - **3.** $\angle RPG \cong \angle PGM$ and $\angle RGP \cong \angle GPM$ (If \parallel lines, then alt. int. $\angle s$ are \cong .)
 - **4.** $\triangle PGM \cong \triangle GPR$ (ASA). A similar proof can be written if diagonal \overline{RM} is drawn.
- **21.** Since $\triangle PGM \cong \triangle GPR$ (or $\triangle PMR \cong \triangle GRM$), then $\overline{PR} \cong \overline{MG}$ and $\overline{MP} \cong \overline{GR}$ by CPCTC.

Answers for Lesson 4-5, pp. 230–233 Exercises

- **1.** \overline{VX} ; Conv. of the Isosc. \triangle Thm.
- **2.** \overline{UW} ; Conv. of the Isosc. \triangle Thm.
- **3.** \overline{VY} ; VT = VX (Ex. 1) and UT = YX (Ex. 2), so VU = VY by the Subtr. Prop. of =.
- **4.** Answers may vary. Sample: $\angle VUY$; $\angle s$ opp. \cong sides are \cong .
- **5.** x = 80; y = 40**6.** x = 40; y = 70**7.** x = 38; y = 4**8.** 150; 15
- **9.** 24, 48, 72, 96, 120 **10.** 64
- **11.** $2\frac{1}{2}$ **12.** 42
- **13.** 35 **14.** 70
- 15. a. *KM*
 - **b.** *KM*
 - c. By construction
 - d. Def. of segment bisector
 - **e.** Reflexive Prop. of \cong
 - f. SSS
 - g. CPCTC

16. a. *RS*

b. \overline{RS}

Statements	Reasons
1. \overline{RS} bisects $\angle PRQ$	1. Given
2. $\angle PRS \cong \angle QRS$	2. Def. of bisector
3. $\angle P \cong \angle Q$	3. Given
4. $\overline{RS} \cong \overline{RS}$	4. Reflexive Prop. of \cong
5. $\triangle PRS \cong \triangle QRS$	5. AAS
6. $\overline{PR} \cong \overline{QR}$	6. CPCTC

17. a.

b. 5; 30, 60, 90, 120, 150

18. Answers may vary. Sample: Corollary to Thm. 4-3: Since XY ≈ YZ, ∠X ≈ ∠Z by Thm. 4-3. YZ ≈ ZX, so ∠Y ≈ ∠X by Thm. 4-3 also. By the Trans. Prop., ∠Y ≈ ∠Z, so ∠X ≈ ∠Y ≈ ∠Z. Corollary to Thm. 4-4: Since ∠X ≈ ∠Z, XY ≈ YZ by Thm. 4-4. ∠Y ≈ ∠X, so YZ ≈ ZX by Thm. 4-4 also. By the Trans. Prop., XY ≈ ZX, so XY ≈ YZ ≈ ZX.
19. C

20.
$$x = 60; y = 30$$

21. x = 36; y = 36

- **22.** x = 30; y = 120
- 23. Two sides of a △ are ≃ if and only if the △ opp. those sides are ≃.
- **24.** 80, 80, 20; 80, 50, 50
- 25. a. isosc. A
 - **b.** 900 ft; 1100 ft
 - **c.** The tower is the \perp bis. of the base of each \triangle .
- **26.** No; the \triangle can be positioned in ways such that the base is not on the bottom.
- **27.** 45; they are = and have sum 90.
- **28.** $\angle A \cong \angle D$ by the Isos. \triangle Thm. $\triangle ABE \cong \triangle DCE$ by SAS.
- **29.** $\overline{AC} \cong \overline{CB}$ and $\angle ACD \cong \angle DCB$ are given. $\overline{CD} \cong \overline{CD}$ by the Refl. Prop. of \cong , so $\triangle ACD \cong \triangle BCD$ by SAS. So $\overline{AD} \cong \overline{DB}$ by CPCTC, and \overline{CD} bisects \overline{AB} . Also $\angle ADC \cong \angle BDC$ by CPCTC, $m \angle ADC + m \angle BDC = 180$ by \angle Add. Post., so $m \angle ADC = m \angle BDC = 90$ by the Subst. Prop. So \overline{CD} is the \perp bis. of \overline{AB} .
- **30.** m = 36; n = 27 **31.** m = 60; n = 30
- **32.** *m* = 20; *n* = 45
- **33.** (0,0), (4,4), (-4,0),
(0,-4), (8,4), (4,8)**34.** (5,0); (0,5); (-5,5);
(5,-5); (0,10); (10,0)
- **35.** (5,3); (2,6); (2,9); (8,3); (-1,6); (5,0)
- **36. a.** 25
 - **b.** 40; 40; 100
 - **c.** Obtuse isosc. \triangle ; 2 of the \angle s are \cong and one \angle is obtuse.

- **37.** The \perp bis. of the base of an isosc. \triangle is the bis. of the vertex \angle ; given isosc. $\triangle ABC$ with \perp bis. \overline{CD} , $\angle ADC \cong \angle BDC$ and $\overline{AD} \cong \overline{DB}$ by def. of \perp bis. Since $\overline{CD} \cong \overline{CD}$ by Refl. Prop., $\triangle ACD \cong \triangle BCD$ by SAS. So $\angle ACD \cong \angle BCD$ by CPCTC, and \overline{CD} bisects $\angle ACB$.
- **38.** a. 5

Geometry

40. $45 < \text{measure of base} \angle < 90$

- **1.** $\triangle ABC \cong \triangle DEF$ by HL. Both & are rt. &, $\overline{AC} \cong \overline{DF}$, and $\overline{CB} \cong \overline{FE}$.
- **2.** $\triangle LMP \cong \triangle OMN$ by HL. Both & are rt. & because vert. & are \cong ; $\overline{LP} \cong \overline{NO}$, and $\overline{LM} \cong \overline{OM}$.
- **3.** $\angle T$ and $\angle Q$ are rt. \angle s.
- **4.** $\overline{RX} \cong \overline{RT}$ or $\overline{XV} \cong \overline{TV}$
- **5.** a. \cong suppl. \angle s are rt. \angle s
 - **b.** Def. of rt. \triangle
 - **c.** Given
 - **d.** Reflexive Prop. of \cong
 - e. HL
- 6. Given that $\angle D$ and $\angle B$ are right $\underline{\land}$, $\triangle ADC$ and $\triangle CBA$ are right $\underline{\land}$ by the def. of rt. \triangle . $\overline{AC} \cong \overline{AC}$ by the Reflexive Prop. of \cong , and $\overline{AD} \cong \overline{CB}$ is given. Therefore, $\triangle ADC \cong \triangle CBA$ by HL.
- 7. a. Given
 - **b.** Def. of \perp
 - **c.** $\triangle MLJ$ and $\triangle KJL$ are rt. \triangle .
 - **d.** Given
 - e. $\overline{LJ} \cong \overline{LJ}$
 - f. HL

- 8. Given that $\overline{HV} \perp \overline{GT}$ and $\overline{GH} \cong \overline{TV}$, then $\triangle IGH$ and $\triangle ITV$ are right \triangleq by the def. of rt. \triangle . It is given that *I* is the midpoint of \overline{HV} , so $\overline{HI} \cong \overline{VI}$ by the def. of midpt. Therefore, $\triangle IGH \cong \triangle ITV$ by the HL Thm.
- **9.** HL; each rt. \triangle has a \cong hyp. and side.
- **10.** x = 3; y = 2
- **11.** x = -1; y = 3
- **12.** whether the 7-yd side is the hyp. or a leg
- **13.** It is given that $\overline{RS} \cong \overline{TU}$, $\overline{RS} \perp \overline{ST}$, $\overline{TU} \perp \overline{UV}$, and that *T* is the midpoint of \overline{RV} . $\triangle RST$ and $\triangle TUV$ are both right triangles by the definition of a right triangle. $\overline{RT} \cong \overline{TV}$ by the definition of midpoint. Therefore, $\triangle RST \cong \triangle TUV$ by HL.

14. 1.
$$JM \cong WP$$
 (given)

Geometry

- 2. $\overline{JP} \parallel \overline{MW}$ (given)
- 3. $\overline{JP} \perp \overline{PM}$ (given)
- 4. $\triangle JPM$ and $\triangle PMW$ are rt. & (def. of rt. \triangle)
- 5. $\overline{PM} \cong \overline{PM}$ (Reflex. Prop. of \cong)
- 6. $\triangle JPM \cong \triangle PMW$ (HL)
- **15.** $PS \cong PT$ so $\angle S \cong \angle T$ by the Isosc. \triangle Thm. $\angle PRS \cong \angle PRT$. $\triangle PRS \cong \triangle PRT$ by AAS.

- **6.** $\triangle LMO \cong \triangle LNO$ (AAS)
- 22. Answers may vary. Sample: Measure 2 sides of the △ formed by the amp. and the platform's corner. Since the ▲ will be ≅ by HL or SAS, the △ are the same.

23. a.

- **b.** slope of $\overline{DG} = -1$; slope of $\overline{GF} = -1$; slope of $\overline{GE} = 1$
- **c.** $\angle EGD$ and $\angle EGF$ are rt. $\angle s$.

d.
$$DE = \sqrt{26}; FE = \sqrt{26}$$

- e. $\triangle EGD \cong \triangle EGF$ by HL. Both & are rt. &, $\overline{DE} \cong \overline{FE}$, and $\overline{EG} \cong \overline{EG}$.
- **24.** An HA Thm. is the same as AAS with AAS corr. to the rt. \angle , an acute \angle , and the hyp.
- **25.** Since $\overline{BE} \perp \overline{EA}$ and $\overline{BE} \perp \overline{EC}$, $\triangle AEB$ and $\triangle CEB$ are both rt. \triangle . $\overline{AB} \cong \overline{BC}$ because $\triangle ABC$ is equilateral, and $\overline{BE} \cong \overline{BE}$. $\triangle AEB \cong \triangle CEB$ by HL.
- **26.** No; $\overline{AB} \cong \overline{CB}$ because $\triangle AEB \cong \triangle CEB$, but \overline{AC} doesn't have to be \cong to \overline{AB} or to \overline{CB} .

e. CPCTC

8. Plan: Two pairs of sides are \cong . The third sides are the same segment. Use SSS.

Proof: It is given that $\overline{RS} \cong \overline{UT}$ and $\overline{RT} \cong \overline{US}$. $\overline{ST} \cong \overline{ST}$ by the Reflex. Prop. of \cong . $\triangle RST \cong \triangle UTS$ by SSS.

9. Plan: Two sides and two angles are \cong . The other included sides are the same segment. Use SAS.

Proof: It is given that $\overline{QD} \cong \overline{UA}$ and $\angle QDA \cong \angle UAD$. $\overline{DA} \cong \overline{DA}$ by the Reflex. Prop. of $\cong \triangle QDA \cong \triangle UAD$ by SAS.

10. $\triangle QET \cong \triangle QEU$ by SAS if $\overline{QT} \cong \overline{QU}$. \overline{QT} and \overline{QU} are corr. parts of $\triangle QTB$ and $\triangle QUB$ which are \cong by ASA.

- **11.** $\triangle ADC \cong \triangle EDG$ by ASA if $\angle A \cong \angle E$. $\angle A$ and $\angle E$ are corr. parts in $\triangle ADB$ and $\triangle EDF$, which are \cong by SAS.
- 12–15. Answers may vary. Samples are given.

- **3.** $\triangle ACD \cong \triangle ECB$ (SAS)
- **4.** $\angle A \cong \angle E$ (CPCTC)
- **18.** $PQ \cong RQ$ and $\angle PQT \cong \angle RQT$ by Def. of \bot bisector. $\overline{QT} \cong \overline{QT}$ so $\triangle PQT \cong \triangle RQT$ by SAS. $\angle P \cong \angle R$ by CPCTC. \overline{QT} bisects $\angle VQS$ so $\angle VQT \cong \angle SQT$ and $\angle PQT$ and $\angle RQT$ are both rt. $\angle S$. So $\angle VQP \cong \angle SQR$ since they are compl. of $\cong \angle S. \triangle PQV \cong \triangle RQS$ by ASA so $\overline{QV} \cong \overline{QS}$ by CPCTC.
- **19.** $m \angle 1 = 56; m \angle 2 = 56; m \angle 3 = 34; m \angle 4 = 90; m \angle 5 = 22; m \angle 6 = 34; m \angle 7 = 34; m \angle 8 = 68; m \angle 9 = 112$
- **20.** $\triangle ABC \cong \triangle FCG; ASA$

Geometry

21. $\overline{TD} \cong \overline{RO}$ if $\triangle TDI \cong \triangle ROE$ by AAS. $\angle TID \cong \angle REO$ if $\triangle TEI \cong \triangle RIE$. $\triangle TEI \cong \triangle RIE$ by SSS.

22. $\overline{AE} \cong \overline{DE}$ if $\triangle AEB \cong \triangle DEC$ by AAS. $\overline{AB} \cong \overline{DC}$ and $\angle A \cong \angle D$ since they are corr. parts of $\triangle ABC$ and $\triangle DCB$, which are \cong by HL.

23. a.
$$\overline{AD} \cong \overline{BC}; \overline{AB} \cong \overline{DC}; \overline{AE} \cong \overline{EC}; \overline{DE} \cong \overline{EB}$$

b. Use $\overline{DB} \cong \overline{DB}$ (refl.) and alt. int. $\underline{\bigtriangleup}$ to show $\triangle ADB \cong \triangle CBD$ (ASA). $\overline{AB} \cong \overline{DC}$ and $\overline{AD} \cong \overline{BC}$ (CPCTC). $\triangle AEB \cong \triangle CED$ (ASA) and $\triangle AED \cong$ $\triangle CEB$ (ASA). Then $\overline{AE} \cong \overline{EC}$ and $\overline{DE} \cong \overline{EB}$ (CPCTC).

24.
$$\triangle ACE \cong \triangle BCD$$
 by ASA; $AC \cong BC, \angle A \cong \angle B$ (Given)
 $\angle C \cong \angle C$ (Reflexive Prop. of \cong) $\triangle ACE \cong \triangle BCD$ (ASA)

25. $\triangle WYX \cong \triangle ZXY$ by HL; $\overline{WY} \perp \overline{YX}, \overline{ZX} \perp \overline{YX}, \overline{WX} \cong \overline{ZY}$ (Given) $\angle WYX$ and $\angle ZXY$ are rt. \measuredangle (Def. of \perp) $\overline{XY} \cong \overline{XY}$ (Reflexive Prop. of \cong) $\triangle WYX \cong \triangle ZXY$ (HL)