

Weekend Temperatures

7. Pulse Rate During a Scary Movie

8. Between Classes

© Pearson Education, Inc., publishing as Pearson Prentice Hall. All rights reserved

- **9.** C; the temperature increases steadily and then alternates cooling and warming as the oven turns off and on during a cooking cycle.
- **10.** The pressure dropped from 7 A.M. to 3 P.M., stayed about the same until 9 P.M., and then generally rose until 7 A.M. the next day.
- 11. a. Bottom to Top

b. Top to Bottom

No; the graphs are different because you have a constant speed traveling up but not down.

- 12. a. blue; red
 - **b.** The baby weighs more at first and gains weight steadily for a number of years. The puppy's weight levels off at an earlier age.

14. It shows a person bicycling down and then up a hill because speed increases on the way down and decreases on the way up.

15. a.

- **b.** section showing the distance decreasing
- c. first 2 sections
- **16.** C
- 17. a. Check students' work.
 - **b.** A graph of temperatures at the equator would show little change for daily high temperatures.

Answers for Lesson 5-1, pp. 254–256 Exercises (cont.)

- **18. a.** Answers may vary. Sample: The student started skating and got to cruising speed. After a while, the student sped up going downhill, lost control, and crashed. After getting up, the student decided not to go as fast.
 - **b.** Answers may vary. Sample:

In-Line Skating After School

I-speeding up;

II-cruising; III-crash;

IV-slower speed

- **19.** \$3
- **20.** \$6
- **21.** more than 2 h up to 4 h
- **22.** Answers may vary. Sample: Yes, the line segments make the graph look like steps.

O Pearson Education, Inc., publishing as Pearson Prentice Hall. All rights reserved.

Algebra 1

Chapter 5

Answers for Lesson 5-2, pp. 259–261 Exercises

1. no

2. no

3. yes

4. no

5. yes

6. no

7. no

- **8.** yes
- 9. $\begin{array}{c|cccc} x & x + 7 & f(x) \\ \hline 1 & 1 + 7 & 8 \\ 2 & 2 + 7 & 9 \\ 3 & 3 + 7 & 10 \\ 4 & 4 + 7 & 11 \end{array}$

10. $\begin{array}{c|c|c|c} x & 11x - 1 & y \\ \hline 1 & 11(1) - 1 & 10 \\ 2 & 11(2) - 1 & 21 \\ 3 & 11(3) - 1 & 32 \\ 4 & 11(4) - 1 & 43 \\ \hline \end{array}$

11. $\begin{array}{c|ccccc}
x & x^2 & f(x) \\
\hline
1 & 1^2 & 1 \\
2 & 2^2 & 4 \\
3 & 3^2 & 9 \\
4 & 4^2 & 16
\end{array}$

12. $\begin{array}{c|c|c} x & -4x & f(x) \\ \hline 1 & -4(1) & -4 \\ 2 & -4(2) & -8 \\ 3 & -4(3) & -12 \\ 4 & -4(4) & -16 \end{array}$

13. $\begin{array}{c|c|c|c} x & 15 - x & f(x) \\ \hline 1 & 15 - 1 & 14 \\ 2 & 15 - 2 & 13 \\ 3 & 15 - 3 & 12 \\ 4 & 15 - 4 & 11 \\ \end{array}$

14. $\begin{array}{c|cccc} x & 3x + 2 & y \\ \hline 1 & 3(1) + 2 & 5 \\ 2 & 3(2) + 2 & 8 \\ 3 & 3(3) + 2 & 11 \\ 4 & 3(4) + 2 & 14 \\ \end{array}$

15. $\begin{array}{c|cccc}
x & \frac{1}{4}x & y \\
\hline
1 & \frac{1}{4}(1) & \frac{1}{4} \\
2 & \frac{1}{4}(2) & \frac{1}{2} \\
3 & \frac{1}{4}(3) & \frac{3}{4} \\
4 & \frac{1}{4}(4) & 1
\end{array}$

16. $\begin{array}{c|c|c|c} x & -x + 2 & f(x) \\ \hline 1 & -1 + 2 & 1 \\ 2 & -2 + 2 & 0 \\ 3 & -3 + 2 & -1 \\ 4 & -4 + 2 & -2 \end{array}$

17. {0.5, 53}

- **18.** $\{-8, -2, 18\}$
- **19.** {-27, -7, -2, 8, 48}
- **20.** $\{-4\frac{1}{2}, -\frac{3}{4}, 0\}$

21. no

22. no

- **23.** yes; $\{-4, -1, 0, 3\}$; $\{-4\}$
- **24.** Answers may vary. Sample: A relation is not a function if two range values have the same domain value.
- 25. No; two 4-year-old iguanas may have different lengths.
- **26.** Answers may vary. Sample:

X	y y
14	60
13	58
16	60
14	63

Data represent the ages (x) and heights (y) of 4 students.

31. a.
$$\{-300, -210, 0, 72\}$$

b. Domain is the number of cameras sold, and range is the profit.

- **41. a.** Answers may vary. Sample: The cost appears to be far too little.
 - **b**. Answers may vary. Sample: The student failed to convert hours to minutes.
 - **c.** \$10.80
 - **d.** whole numbers; positive numbers
- **42. a.** $g \mid 180-25g \mid d$ $2 \mid 180-25(2) \mid 130$ $4 \mid 180-25(4) \mid 80$ $6 \mid 180-25(6) \mid 30$ $8 \mid 180-25(8) \mid -20$
 - **b.** about 7 gallons
 - c. Domain: More than 0 gallons up to 15 gallons; Since the car would be stuck if there was no gas in it.

 Range: 0 to 180 miles; Since you are 180 miles away and start heading home, 180 is the upper limit. Your distance will be 0 when you arrive at home.
- **43.** 23

- **46.** 20
- **47.** Yes, it passes the vertical line test; no, it doesn't pass the vertical line test.
- **48.** a. 0, -1, -2, -6
 - **b.** all integers

1-9. Tables may vary. Samples are given.

- 1. x | f(x) = 1 x

Answers for Lesson 5-3, pp. 266–267 Exercises (cont.)

5.

0

24

6.

X	l y		,
-1	1		
0	5		5.
0	9		
			_
			1
			H
		\mathcal{I}	O
		/	_

\mathcal{X}	<i>y</i>					5	y	1
$\overline{-3}$	1							
-2	2					3		
_ _1	3							
0	1					1		
1	 	_		3	(\overline{O}	1	x
1	1)					١	,	
1	5		_	3	(\mathcal{O}	1	X

10. a. M = 3.5 h

b-d. Answers may vary. Samples are given.

b

h	M
0	\$0.00
$\frac{1}{2}$	\$1.75
1	\$3.50
2	\$7.00
3	\$10.50

C.

d. about 8.5 h

11. a.

a.	ℓ	$P(\ell)$
	1	5
	2	10
	3	15
	4	20

b.

Answers for Lesson 5-3, pp. 266–267 Exercises (cont.)

12. discrete;

p	0.35p	C(p)
1	0.35(1)	0.35
2	0.35(2)	0.70
3	0.35(3)	1.05
4	0.35(4)	1.40

Number of Bolts

13. continuous;

n	2 <i>n</i>	A(n)
1	2(1)	2
2	2(2)	4
3	2(3)	6
4	2(4)	8

Pounds of Stringbeans

14. discrete;

C	0.75c - 0.42cn	
1	0.75 - 0.42(1)	0.33
2	0.75 - 0.42(2)	0.66
3	0.75 - 0.42(3)	0.99
4	0.75 - 0.42(1) 0.75 - 0.42(2) 0.75 - 0.42(3) 0.75 - 0.42(4)	1.32

15.

19.

20.

21.

22.

b. Water Use in Shower

- c. Check students' work.
- d. Check students' work.
- **25.** Check students' work.
- 26. a.

ℓ	$A(\ell)$
1	0.5
2	2
3	4.5
4	8

- **b.** continuous; length is a continuous measure
- C.

27.

28.

29.

31.

32.

33.

34.

35.

36. D

37. a.

- **b.** x-axis
- **c.** y = -|x| 1
- 38 a. Tiles Peri

Tiles	Perimeter
1	4
2	6
3	8
4	10

b. P(t) = 2t + 2,

Tile Perimeter

39. a.

b. It changes the *y*-intercept.

40. a.

- **b.** It makes the graph wider or narrower.
- **41.** a. 1, 1, -1, -1
 - **b.** $\{-1, 0, 1\}$
 - **c.** Tables may vary. Sample:

\mathcal{X}	l y
- 4	$\left -1\right $
-2	-1
0	0
2	1
4	1

d. No; s(3 + 5) = s(8) = 1 and s(3) + s(5) = 1 + 1 = 2; $1 \neq 2$.

4. f(x) = 3x **5.** f(x) = x - 0.5 **6.** f(x) = 0.5x

7. f(x) = -3x **8.** y = 4x **9.** $y = x^2$

10. t(c) = 0.79c **11.** d(n) = 45n **12.** $f(h) = \frac{1}{12}h$

13. e(n) = 6.37n **14.** $A(n) = n^2$ **15.** $V(n) = n^3$

16. $A(r) = \pi r^2$

17. a. f(x) = 0.19x

b. \$1.52

18. a. f(x) = 0.34 + 0.21(x - 1)

b. \$.97

19. f(x) = 1000x **20.** f(x) = 2.54x

21. a. C(a) = 10a + 1

b. \$31

c. 61; the total cost of 12 books

d. discrete; You cannot buy parts of a book.

22. a. C(b) = 6b

b. 72; the total cost of 12 books

c. about \$5.08

d. Club; \$61 is less than \$72.

23. Answers may vary. Sample: The input values you need may not be in the table.

24. a. gal of water, number of loads

b. w(n) = 34n

c. 238 gal

d. 13 loads

- 25. Answers may vary. Sample: f(x) = 60x; f(3) = 180, 180 mi in 3 h, the distance you can travel at a constant speed of 60 mi/h
 26. C
- 27. $\begin{array}{c|cccc}
 x & y \\
 \hline
 -1 & 3 \\
 0 & 2 \\
 1 & 1 \\
 2 & 0 \\
 3 & -1 \\
 y = -x + 2
 \end{array}$
- 28. $\begin{array}{c|c} x & y \\ -2 & -2 \\ -1 & -\frac{1}{2} \\ 0 & 1 \end{array}$
- 29. $\begin{array}{c|c} x & y \\ \hline -4 & -3 \\ -2 & 0 \\ 0 & 3 \end{array}$

$$y = \frac{3}{2}x + 1$$

$$y = \frac{3}{2}x + 3$$

30. a. c Process A(c)\$12 | 45 - [12 + 0.15(12)] | \$31.20 \$18 | 45 - [18 + 0.15(18)] | \$24.30 \$24 | 45 - [24 + 0.15(24)] | \$17.40 \$28 | 45 - [28 + 0.15(28)] | \$12.80

b.
$$A(c) = 45 - (c + 0.15c)$$

31. a.

h	Process	A(h)
1	$1\cdot 3\cdot \frac{1}{2}$	$\frac{3}{2}=1\frac{1}{2}$
2	$2\cdot 3\cdot \frac{1}{2}$	3
3	$3\cdot 3\cdot \frac{1}{2}$	$\frac{9}{2} = 4\frac{1}{2}$

- **b.** $A(h) = \frac{3}{2}h$
- c. discrete; The figures represent tiles, which usually counted in whole units.
- d.

- **32.** $f(x) = x^3$ **33.** $f(x) = -x^3$ **34.** $f(x) = -x^3 1$
- **35.** a. c(m) = 44 + 0.38m
 - **b.** \$70.60, \$89.60
 - **c.** 38 mi
 - **d.** \$202
- **36.** a. B(v) = 6.93v
 - **b.** $B(w) = \frac{7}{10}w$

Answers for Lesson 5-5, pp. 280–282 Exercises

3. yes;
$$-2$$

5. yes;
$$\frac{5}{6}$$

6. yes;
$$\frac{7}{3}$$

7. yes;
$$-\frac{1}{10}$$

9. yes;
$$-\frac{3}{2}$$

10.
$$y = 5x$$

11.
$$y = \frac{1}{5}x$$

12.
$$y = -\frac{5}{4}x$$

13.
$$y = \frac{9}{5}x$$

14.
$$y = -\frac{3}{2}x$$

15.
$$y = -\frac{1}{6}x$$

16.
$$y = -\frac{4}{3}x$$
 17. $y = -\frac{4}{3}x$

17.
$$y = -\frac{4}{3}x$$

18.
$$y = -\frac{4}{3}x$$

19.
$$y = 2x$$

20.
$$y = -\frac{2}{3}x$$

21.
$$y = \frac{1}{5}x$$

22–23. Choices of variables may vary.

22.
$$P(\ell) = 8\ell$$

23.
$$E(h) = 7.10h$$

24. yes;
$$y = 1.8x$$

26. yes;
$$y = -1.5x$$

27. a.
$$\frac{20}{50}$$
 or 0.4

b.
$$f = 0.4w, 52 \text{ lb}$$

28.
$$d = 0.3t$$
, 9 mi **29.** $y = \frac{1}{6}x$

29.
$$y = \frac{1}{6}x$$

30.
$$y = -20x$$

31.
$$y = -\frac{36}{25}x$$
 32. $y = 6x$

32.
$$v = 6x$$

33.
$$y = 9x$$

34.
$$y = -\frac{1}{32}x$$
 35. $y = -\frac{15}{52}x$

35.
$$y = -\frac{15}{52}x$$

36.
$$y = \frac{27}{64}x$$

- **37.** a. The ratio $\frac{y}{x}$ is the same for each pair of values.
 - **b.** A line through the origin that is neither vertical nor horizontal is the graph of a direct variation.
- **38.** True; a line that is neither horizontal nor vertical can pass through (0, 0) and (-2, 4).
- **39.** False; the line through (0,3) and (0,0) is vertical, so it is not a function and is therefore not a direct variation.
- **40.** True; for the equation y = kx, if one side is multiplied by 3, then the other side must be multiplied by 3.

$$y = \frac{5}{2}x$$

42.

$$y = -\frac{5}{2}x$$

43.

$$y = -\frac{5}{2}x$$

$$y = \frac{5}{2}x$$

- **45.** a. $\frac{1}{32}$
 - **b.** $b = \frac{1}{32}w$
 - c. Check students' work.
- **46. a.** 48 volts
 - **b.** 0.75 ohms
- **47.** Check students' graphs.
 - **a.** The graphs get steeper for increasing, positive values of the constant of variation.
 - **b.** It would appear less steep than y = x.
- **48.** 12

49. -8

50. 8

51. −6

52. 5

53. 2

54. a. c = 1.83g; yes

b.
$$c = \frac{1.83}{24}m$$
 or $c = 0.07625m$

5. xy = 24

6. xy = 7.7

7. xy = 2

8. xy = 0.5

9. xy = 0.06

10. 8

11. 15

12. 6

13. 7

14. 3

15. 130

16. 12

17. 96

18. 3125

19. 2

20. $\frac{1}{6}$

21. 20

22. 3 h

23. 13.3 mi/h

24. direct variation; y = 0.5x

25. inverse variation; xy = 60

26. inverse variation; xy = 72

27. Direct variation; the ratio $\frac{\cos t}{\text{pound}}$ is constant at \$1.79.

28. Inverse variation; the total number of slices is constant at 8.

29. Inverse variation; the product of the length and width remains constant with an area of 24 square units.

30. 32; xy = 32

31. 1.1; rt = 1.1

32. 2.5; xy = 2.5

33. 1; ab = 1

34. 15.6; pq = 15.6

35. 375; xy = 375

36. Direct variation; the ratio of the perimeter to the side length is constant at 3.

37. Inverse variation; the product of the rate and the time is always 150.

38. Direct variation; the ratio of the circumference to the radius is constant at 2π .

39. 121 ft

40. 2.4 days

- **41.** direct variation; y = 0.4x; 8
- **42.** direct variation; y = 70x; 0.9
- **43.** inverse variation; xy = 48; 0.5
- 44. a. greater
 - **b.** greater
 - c. less
- **45.** a. 16 h; 10 h; 8 h; 4 h
 - **b.** hr worked, rate of pay
 - c. rt = 80
- **46.** Check students' work.
- **47.** A
- **48.** p: y = 0.5x; q: xy = 8
- **49. a.** *y* is doubled.
 - **b.** *y* is halved.
- **50.** $4; s(\frac{1}{2}d)^2 = \frac{1}{4}sd^2 = k, \text{ so } s = 4\frac{k}{d^2}.$
- **51.** a. $x^4y = k$
 - **b.** $\frac{x^4y}{z} = k$

Answers for Lesson 5-7, pp. 294–296 Exercises

- **1.** "Add 2 to the previous term"; 12, 14.
- **2.** "Multiply the previous term by $1\frac{1}{2}$ "; $20\frac{1}{4}$, $30\frac{3}{8}$.
- **3.** "Add 2 to the first term, 3 to the second term and continue, adding 1 more each time"; 18, 24.
- **4.** "Add 0.04 to the previous term"; 3.16, 3.20.
- **5.** "Multiply the previous term by 1.1"; 4.3923, 4.83153.
- **6.** "Add -2 to the previous term"; -5, -7.
- 7. "Add 1.1 to the previous term"; 5.5, 6.6.
- **8.** "Multiply the previous term by 10"; 10, 100.
- 9. "Multiply the previous term by 4"; 512, 2048.
- **10.** "Square the reciprocals of consecutive integers"; $\frac{1}{25}$, $\frac{1}{36}$.
- 11. "Add -14 to the previous term"; -47, -61.
- **12.** "Multiply the previous term by 5"; 937.5, 4687.5.

17.
$$-\frac{1}{6}$$

23.
$$-3, 15, 39$$

33.
$$-0.8, -3.8, -7.8$$

14.
$$-4$$

24.
$$-3, 9, 25$$

32.
$$-8$$
, -17 , -29

34.
$$-4$$
, -10

38. 35, 48

39. 31, 40

40. 2.5, 1.25

41. $8, 8\frac{1}{4}$

42. $\frac{4}{27}$, $-\frac{4}{81}$

43. a. Answers may vary. Sample: Inductive reasoning is making conclusions based on patterns, while deductive reasoning is making conclusions based on given facts.

b. Answers may vary. Check students' work.

44. 5 min

45. Answers may vary. Sample: A(n) = 2 - 4n

46. 7 lb 4 oz, 7 lb 9 oz, 7 lb 14 oz, 8 lb 3 oz, 8 lb 8 oz; the baby's weight at the end of the 4th week

47. \$4500, \$4350, \$4200, \$4050, \$3900; the balance after 4 payments

48. a. $\underbrace{1}_{1}\underbrace{2}_{2}4;7$

b. $\frac{2}{1} = 2; \frac{4}{2} = 2; 8$

c. When there are more than three terms you can test the pattern to make sure it is reasonable.

49. No; there is no common difference.

50. Yes; the common difference is -4.

51. No; there is no common difference.

52. No; there is no common difference.

53. Yes; the common difference is -15.

54. Yes; the common difference is -0.8.

55. a. 1, 5, 10, 10, 5, 1

Algebra 1

- **56.** $11\frac{1}{3}$, 12, $13\frac{1}{3}$
- **57.** 4.5, -4.5, -22.5
- **58.** -2, -5.2, -11.6
- **59.** $1, 2\frac{3}{5}, 5\frac{4}{5}$
- **60.** a. 11, 14
 - b.

- **c.** The points lie on a line.
- **61. a.** Yes; for each input there is only one output value.
 - **b.** For every increase of 7 in the key position, the frequency doubles.
- **62.** a. 21
 - **b.** 89
 - **c.** Answers may vary. Sample: 3, 3, 6, 9, 15, 24, 39
- **63.** value of new term = value of previous term + 6
- **64.** value of new term = value of previous term \cdot 1.5
- **65.** value of new term = value of previous term -2.5

Answers for Lesson 5-7, pp. 294–296 Exercises (cont.)

- **66.** value of new term = value of previous term + 4
- **67.** value of new term = value of previous term \div 7
- **68.** value of new term = value of previous term \cdot (-2.5)
- **69.** x; 4x + 4
- **70.** 3a + 2b; 10a + 7b + c
- **71**. **a**. 10
 - **b.** -6
 - **c.** A(n) = 10 + (n-1)(-6)
- **72.** a. blue
 - **b.** Blue; the colors rotate red, blue, and purple. Every third figure is purple. Since 21 is divisible by 3, the 21st figure is purple. The figure just before a purple figure is blue.
 - **c.** 12 sides; the figures show this pattern for number of sides.

Figure Number of Sides

11

12

- **73.** a. -5
 - **b.** 6

25 - 27

28

c. A(n) = -5 + (n-1)(6)