- **1.** 1:1000
- **3.** 3*b*

5. $\frac{b}{4}$

2. 1:370

6. $\frac{b}{a}$

7. $\frac{3}{a}$

- **9.** $\frac{7}{4}$
- 10. $\frac{3}{7}$

- **11.** $\frac{b+4}{4}$
- **12.** 4
- **13.** $1\frac{2}{3}$
- **14.** 4

- **15.** 6.875
- **16.** 7.2
- **17.** 7.2
- **18.** 7.5

- **19.** 14
- **20.** 7
- **21.** 125 mi

23. about 135 mi

25. 18 in. by 22.5 in.

- **22.** about 75 mi
- **24.** about 67.5 mi
- **26.** 13 : 6
- **27.** 5 : 4
- **28.** 4 : 3
- **29.** A

- 30. $\frac{7}{3}$
- **31.** $\frac{9}{4}$
- **32.** $\frac{30}{18}$
- **33.** $\frac{b}{2}$

- **34.** Check students' work.
- **35.** 6
- **36.** 32
- **37.** 16.5
- **38.** 6

- **39.** 4
- **40.** $\frac{12}{19}$
- **41.** 4, -3 **42.** $\frac{1}{2}$, $-\frac{5}{6}$

- **43.** 16 cm
- **44.** 0.348 in. **45.** 9; 18
- **46.** 9; 12

- **47.** 8; 21
- 48-51. Answers may vary. Samples are given.

48.

49. [

Scale 1 cm = 10 ft

Answers for Lesson 7-1, pp. 368–370 Exercises (cont.)

Scale 1 cm = 32 ft

- **52.** Elaine did not convert units, and thought the ratios equaled 1.
- **53.** $\frac{b}{d}$ or $\frac{a}{c}$
- **54.** $\frac{c}{d}$ or $\frac{a}{b}$
- **55.** $\frac{c + 2d}{d}$
- **56.** $\frac{a}{b} = \frac{c}{d}$ (Given); ad = bc (Cross-Product Prop.); bc = ad(Symm. Prop. of =); $\frac{bc}{ac} = \frac{ad}{ac}$ (Div. Prop. of =); $\frac{b}{a} = \frac{d}{c}$ (Simplify)
- **57.** $\frac{a}{b} = \frac{c}{d}$ (Given); ad = bc (Cross-Prod. Prop.); $\frac{ad}{cd} = \frac{bc}{cd}$ (Div. Prop. of =); $\frac{a}{c} = \frac{b}{d}$ (Simplify)
- **58.** $\frac{a}{b} = \frac{c}{d}$ (Given); $\frac{a}{b} + 1 = \frac{c}{d} + 1$ (Add. Prop. of =); $\frac{a}{b} + \frac{b}{b} = \frac{c}{d} + \frac{d}{d}$ (Subst.); $\frac{a+b}{b} = \frac{c+d}{d}$ (Simplify)
- **59.** x = 5; y = 24 **60.** x = 3; y = 15 **61.** x = 3; y = 21

7. no; $\frac{20}{30} \neq \frac{36}{52}$

5. *JT*

6. *HY*

8. yes; $QRST \sim XWZY$; $\frac{3}{4}$ **9.** yes; $KLMJ \sim PQNO$; $\frac{3}{5}$

10. yes; $ABCD \sim FGHE$; $\frac{4}{5}$

11. No; corr. \angle s are not \cong .

12. yes; $\triangle ABC \sim \triangle FED; \frac{7}{5}$ **13.** x = 4; y = 3

14. x = 20; y = 17.5; z = 7.5 **15.** x = 16; y = 4.5; z = 7.5

16. x = 6; y = 8; z = 10

17. 6.6 in. by 11 in.

18. 3.6 in. by 6 in.

19. 70 mm

20. 54 in. by 87.37 in.

21. 2:3

22. 3 : 2

23. 50

24. 50

25. 70

26. $\frac{2}{3}$

27. 7.5 m

28. 5.6 m

29. Yes; corr. \triangle are \cong and corr. sides are proportional with a ratio of 1:1.

30. equal sign, similarity symbol; Answers may vary. Sample: \cong figures are similar with = areas.

31. C

32. x = 60, y = 25

33. 2.6 cm

34. 3 : 4

35. 3 : 1

36. 2 : 1

37. 1 : 2

38. 4 : 3

39. 2:3

40. sides of 2 cm; \angle s of 60° and 120°

Answers for Lesson 7-2, pp. 375–378 Exercises (cont.)

- **41.** sides of 2 cm: \angle s of 60° and 120°
- **42.** sides of 3.2 cm; \angle s of 60° and 120°
- **43.** sides of 0.8 cm; \angle s of 60° and 120°
- **44.** sides of 1 cm; \angle s of 60° and 120°
- **45.** sides of 3 cm; \angle s of 60° and 120°
- **46.** 16.2 in.

- **47.** 6.2 in.
- **48.** No; corr. sides are not in proportion.
- **49.** Yes; explanations may vary. Sample: The ratios of radii, diameters, and circumferences of 2 circles are =.
- **50.** Answers may vary. Sample:

- **51.** a. (1) Corr. sides of \sim polygons are proport.
 - **(2)** Subst.
 - (3) Cross-Product Prop.
 - (4) Subtr. Prop.
 - **b.** Length cannot be negative.
 - **c.** 1.6180
- **52.** a. 21, 34, 55, 89, 144, 233, 377
 - **b.** 1.6; 1.625; 1.6154; 1.6190; 1.6176; 1.6182; 1.6180; 1.6181; 1.6180
 - **c.** The ratios get closer to the golden ratio.

161

Answers for Lesson 7-3, pp. 385–388 Exercises

- **1.** Yes; $\triangle ABC \sim \triangle FED$; SSS \sim Thm.
- 2. No; more info. is needed.
- **3.** Ex. 1: $\frac{2}{3}$ (for $\triangle ABC$ to $\triangle FED$); Ex. 2: Not possible; the \triangle aren't necessarily similar.
- **4.** yes; $\triangle FHG \sim \triangle KHJ$; AA \sim Post.
- **5.** No; $\frac{6}{3} \neq \frac{10}{4}$.

- **6.** No; $\frac{20}{45} \neq \frac{25}{55}$.
- 7. Yes; $\triangle APJ \sim \triangle ABC$; SSS \sim Thm. or SAS \sim Thm.
- **8.** Yes; $\triangle NMP \sim \triangle NQR$; SAS \sim Thm.
- **9.** No; $\frac{32}{22} \neq \frac{45}{30}$.
- **10.** AA ~ Post.; 7.5

11. AA ~ Post.; 2.5

12. AA ~ Post.; $12\frac{5}{6}$

13. AA ~ Post.; 12

14. AA ~ Post.; 8

- **15.** AA ~ Post.; 15
- **16.** SAS \sim Thm.; 12 m
- **17.** AA \sim Post.; 220 yd
- **18.** AA \sim Post.; 15 ft 9 in.
- **19.** AA \sim Post.; 90 ft
- **20.** Answers may vary. Sample: She can measure her shadow and use $\sim \triangle$ to find the length of the shadow of the proposed building.
- **21.** 151 m
- 22. a. trapezoid
 - **b.** $\triangle RSZ \sim \triangle TWZ$; AA \sim Post.
- **23.** a. No; the corr. \angle s may not be \cong .
 - **b.** Yes; every isosc. rt. \triangle is a 45°-45°-90° \triangle . Therefore, by $AA \sim Thm$. they are all \sim .
- **24.** Yes; $\triangle GMK \sim \triangle SMP$; SAS \sim Thm.

Answers for Lesson 7-3, pp. 385–388 Exercises (cont.)

25. Yes; $\triangle AWV \sim \triangle AST$; SAS \sim Thm.

26. Yes; $\triangle XYZ \sim \triangle MNK$; SSS \sim Thm.

27. No; there is only one pair of \cong \triangle .

28. 45 ft

29. Check students' work.

30. 3 : 2

31. 2 : 1

32. 12:7

33. 4:3

34. 3 : 1

35. 3 : 2

36. 3 : 2

37. 2 : 1

38. 3 : 1

39. 6 : 1

40. Check students' work. Draw $\triangle ABC$. Construct $\angle A \cong \angle R$. Construct \overline{RS} such that RS = 3AB, and \overline{RT} such that RT = 3AC. Connect points S and T.

41. 1. $RT \cdot TQ = MT \cdot TS$ (Given)

2. $\frac{MT}{TQ} = \frac{RT}{TS}$ (Prop. of Proportions)

3. $\angle RTM \cong \angle STQ$ (Vert. $\angle s$ are \cong .)

4. $\triangle RTM \sim \triangle STQ$ (SAS \sim Thm.)

42. 1. $\ell_1 \parallel \ell_2$, $\overline{EF} \perp \overline{AF}$, $\overline{BC} \perp \overline{AF}$ (Given)

2. $\angle EFD$ and $\angle BCA$ are right \triangle s. (Def. of \bot)

3. $\angle EFD \cong \angle BCA$ (All rt. \triangle are \cong .)

4. $\angle BAC \cong \angle EDF$ (If \parallel lines, then corr. $\angle s$ are \cong .)

5. $\triangle ABC \sim \triangle DEF (AA \sim)$

6. $\frac{BC}{AC} = \frac{EF}{DF}$ (Def. of similar)

Answers for Lesson 7-3, pp. 385–388 Exercises (cont.)

- **43.** 1. $\frac{BC}{AC} = \frac{EF}{DF}$, $\overline{EF} \perp \overline{AF}$, $\overline{BC} \perp \overline{AF}$ (Given)
 - **2.** $\angle ACB$ and $\angle DFE$ are rt. $\angle s$. (Def. of \bot)
 - **3.** $\angle ACB \cong \angle DFE$ (All rt. $\angle s$ are \cong .)
 - **4.** $\triangle ABC \sim \triangle DEF (SAS \sim)$
 - **5.** $\angle BAC \cong \angle EDF$ (Def. of similar)
 - **6.** $\ell_1 \parallel \ell_2$, (If corr. \angle s are \cong , then \parallel lines.)
- **44.** $\triangle ADC \sim \triangle CBD \sim \triangle ABC$; \overline{CD} is an altitute to the hypotenuse of a rt. triangle, $\triangle ABC$. Therefore, it divides $\triangle ABC$ into two triangles ($\triangle ADC$ and $\triangle CBD$) that are similar to each other and to the original triangle.

© Pearson Education, Inc., publishing as Pearson Prentice Hall. All rights reserved.

Geometry Chapter 7 164

Answers for Lesson 7-4, pp. 394–396 Exercises

2. $2\sqrt{10}$

4. 12

6. 25

10. *r*

14. *b*

16. 20

20. 60

18. $6\sqrt{3}$

12. *a*; *a*

8. $3\sqrt{7}$

- **1.** 6
- 3. $4\sqrt{3}$
- 5. $14\sqrt{2}$
- 7. $6\sqrt{6}$
- **9.** *s*
- **11.** *c*
- **13.** *h*
- **15.** 9
- **17.** 10
- **19.** 12
- **21.** a. 18 mi
 - **b.** 24 mi
- **22.** *KNL*; *JNK*
- **23. a.** 4 cm

b.

- c. Answers may vary. Sample: Draw a 10-cm segment.
 2 cm from one endpoint, construct a ⊥ of length 4 cm.
 Connect to form a △.
- 24. a.

- **b.** They are =. Explanations may vary. Sample: The altitude and hyp. segments are \cong sides of two isosc. \triangle .
- **25.** (10, 6), (-2, 6)

26. $4\sqrt{3}$

27. 14

28. 2

Answers for Lesson 7-4, pp. 394–396 Exercises (cont.)

29.
$$\sqrt{14}$$

30. 1

32. $10\sqrt{10}$

34.
$$x = 12; y = 3\sqrt{7};$$
 $z = 4\sqrt{7}$

35.
$$x = 12\sqrt{5}; y = 12;$$
 $z = 6\sqrt{5}$

36.
$$x = 4; y = 2\sqrt{13};$$
 $z = 3\sqrt{13}$

37.
$$12\sqrt{2}$$

39.
$$\ell_1 = \sqrt{2}, \ell_2 = \sqrt{2}, a = 1, h_2 = 1$$

40.
$$\ell_1 = 2\sqrt{13}, \ell_2 = 3\sqrt{13}, h = 13, a = 6$$

41.
$$\ell_1 = \ell_2 = 6\sqrt{2}, h = 12, h_2 = 6$$

42.
$$\ell_2 = 2\sqrt{3}, h = 4, a = \sqrt{3}, h_1 = 1$$

43.
$$\ell_1 = 5, a = \frac{60}{13}, h_1 = \frac{25}{13}, h_2 = \frac{144}{13}$$

44.
$$\ell_2 = \frac{4\sqrt{7}}{3}, h = \frac{16}{3}, a = \sqrt{7}, h_2 = \frac{7}{3}$$

45.
$$\ell_1 = 8\sqrt{5}, \ell_2 = 4\sqrt{5}, h_1 = 4, h_2 = 20$$

46.
$$\ell_1 = 6, h = 12, a = 3\sqrt{3}, h_2 = 9$$

47. C is equidistant from A and B so C is on the \bot bisector of \overline{AB} (\bot Bis. Thm.) which thus must be \overline{CM} , the altitude to the hypotenuse. Since M is the midpoint of \overline{AB} , $AM = \frac{1}{2}AB$. Also, by Corollary 2 to Thm. 7-3, x is the geometric mean of AM and AB, so $\frac{\frac{1}{2}AB}{x} = \frac{AM}{x} = \frac{x}{AB}$. By the Cross-Product Property, $\frac{1}{2}AB^2 = x^2$, so $AB = x\sqrt{2}$.

- © Pearson Education, Inc., publishing as Pearson Prentice Hall. All rights reserved
- **48.** As in Exercise 47, the altitude to the hypotenuse \overline{CM} is the \bot bisector of \overline{AB} . Thus AM = 10 and AB = 20 = BC = CA. By Corollary 1 to Thm. 7-3, BC is the geometric mean of MB and BD, so $\frac{MB}{BC} = \frac{BC}{BD} = \frac{BC}{MB + MD}$. Substitute in the values for BC and MB and solve for MD. By the Cross-Product Property, $10(10 + MD) = 20^2$, so MD = 30. By Corollary 1 to Thm. 7-3, h is the geometric mean of MB and MD, so $\frac{MB}{h} = \frac{h}{MD}$, $h^2 = 300$, and $h = 3\sqrt{10}$.
- **49.** 3

50. 4

51. 4.5

52. a.

Given: rt. $\triangle ABC$ with alt. \overline{CD} ; Prove: $AC \cdot BC = AB \cdot CD$

- **b.** Yes; $AC \cdot BC = 2 \times \text{area } \triangle ABC$ and $AB \cdot CD = 2 \times \text{area } \triangle ABC$.
- **53. a.** By Corollary 2 to Thm. 7-3, $\frac{c}{a} = \frac{a}{r}$ and $\frac{c}{b} = \frac{b}{q}$. Combined with c = q + r, the resulting system can be reduced to $c^2 = a^2 + b^2$.
 - **b.** The square of the hypotenuse of a right triangle is equal to the sum of the squares of the legs of the triangle.
- **54.** As in Exercise 47, the altitude to the hypotenuse CM is the \bot bisector of \overline{AB} . Thus, AM = MB = x and AB = 2x = BC = CA. By Corollary 1 to Thm. 7-3, BC is the geometric mean of MB and BD, so $\frac{x}{2x} = \frac{2x}{BD} = \frac{2x}{x + MD}$. By the Cross-Product Property, $x(x + MD) = 4x^2$, so MD = 3x. By Corollary 1 to Thm. 7-3, h is the geometric mean of h and h and h so h and h and h and h so h and h and

Answers for Lesson 7-5, pp. 400-404 Exercises

- **1.** 7.5
- **3.** 5.2
- **5.** *c*
- **7.** *d*
- **9.** $3\frac{1}{3}$
- **11.** 6
- **13.** 35
- **15.** $\frac{40}{7}$
- **17.** KS
- **19.** *JP*
- **21.** *KM*
- **23.** *JP*
- **25.** 559 ft

- **2.** 8
- **4**. *d*
- **6.** *b*
- **8.** 7.5
- **10.** 9.6
- **12.** 4.8
- **14.** 3.6
- **16.** 12
- **18.** *SQ*
- **20.** *KP*
- **22.** *PM*
- **24.** *LW*
- **26.** 671 ft
- **27.** 2.4 cm and 2.6 cm; 3.3 cm and 8.7 cm; 3.8 cm and 9.2 cm
- 28. Answers may vary. Sample: 9 cm and 13.5 cm
- **29.** x = 18 m; y = 12 m
- 30. a.

b. isosceles; \triangle - \angle Bisector Thm.

- **31.** 20
- **32.** 2.5
- **33.** $\frac{2}{7}$, 3

Pearson Education, Inc., publishing as Pearson Prentice Hall. All rights reserved.

- 34. a. Given
 - **b.** Prop. of Proportions
 - c. Segment Add. Post.
 - **d.** Reflexive Prop. of \cong
 - e. $SAS \sim Thm$.
 - **f.** Corr. \triangle of $\sim \triangle$ are \cong .
 - **g.** If corr. \angle s are \cong , lines are \parallel .
- 35. a. $\frac{AB}{BC}$
 - **b.** $\frac{WX}{XY}$
 - **c.** $\frac{AB}{BC} = \frac{WX}{XY}$
- **36.** Yes; since $\frac{6}{10} = \frac{9}{15}$, the segments are \parallel by the Converse of the Side-Splitter Thm.
- **37.** No; $\frac{28}{12} \neq \frac{24}{10}$.
- **38.** Yes; since $\frac{15}{12} = \frac{20}{16}$, the segments are \parallel by the Converse of the Side-Splitter Thm.
- **39.** Measure \overline{AC} , \overline{CE} , and \overline{BD} . Use the Side-Splitter Thm. Write the proport. $\frac{AC}{CE} = \frac{AB}{BD}$ and solve for AB.
- **40.** 4.5 cm or 12.5 cm
- **41.** 6

42. 2.5

- **43.** 19.5
- **44.** The two segments are x and y. $\frac{x}{y} = \frac{ks}{s} = k$, so x = ky.

Answers for Lesson 7-5, pp. 400-404 Exercises (cont.)

- **45.** a. A midsegment of a \square connects the midpts. of 2 opp. sides.
 - b.

Given: $\Box ABCD$ with \overline{EF} connecting the midpts. of \overline{AD} and \overline{BC} Prove: $\overline{AB} \parallel \overline{EF}$; $\overline{EF} \parallel \overline{CD}$

- **1.** $\square ABCD$ (Given)
- **2.** $\overline{AE} \parallel \overline{BF}$ and $\overline{ED} \parallel \overline{FC}$ (Def. of \Box)
- **3.** $\overline{AD} \cong \overline{BC}$ (Opp. sides of \square are \cong .)
- **4.** E and F are midpts. of \overline{AD} and \overline{BC} . (Given)
- **5.** $AE = ED = \frac{1}{2}AD; BF = FC = \frac{1}{2}BC$ (Def. of midpt.)
- **6.** AE = BF, ED = FC (Subst.)
- **7.** ABFE and EFCD are \square (If one pair of opp. sides of a quad. is \cong and \parallel , it is a \square .)
- **8.** $\overline{AB} \parallel \overline{EF}$ and $\overline{EF} \parallel \overline{CD}$ (Opp. sides of a \square are \parallel .)
- C.

Geometry

Given: $\square ABCD$ with midsegment \overline{EF} Prove: \overline{EF} bisects \overline{AC} and \overline{BD} . Since $\overline{AB} \parallel \overline{EF} \parallel \overline{DC}$ by part (b), and \overline{EF} bisects \overline{AD} , by the Side-Splitter Thm., \overline{EF} bisects \overline{AC} and \overline{BD} .

- © Pearson Education, Inc., publishing as Pearson Prentice Hall. All rights reserved
- 46. If a ray passes through the vertex of an angle of a triangle and splits the opposite side into segments that are proportional to the other two sides of the triangle, then the ray bisects the angle. Explanations may vary. Sample: Refer to diagram in proof of Theorem 7-5, p. 400. It is given that $\frac{CD}{DB} = \frac{CA}{BA}$, and by the Side-Splitter Thm., $\frac{CD}{DB} = \frac{CA}{AF}$, so BA = AF. $\triangle ABF$ is isosceles by the Isos. Triangle Thm., so $\angle 3 \cong \angle 4$. $\angle 2 \cong \angle 4$ by the Alt. Int. Angles Thm., and $\angle 1 \cong \angle 3$ by the Corr. Angles Thm., so by substitution, $\angle 1 \cong \angle 2$, and therefore \overline{AD} bisects $\angle CAB$.
- **47**. a. 14
 - **b.** 11

Geometry Chapter 7 171