Name

Practice

Equations of Lines: Slope, Distance, and Midpoint Formulas

Answer these problems. Then check your answers online. If you have the wrong answer, mark it incorrect, but then retry the problem. Write a sentence explaining your mistake and how you will avoid making it again.

1. The equation used to find the slope, m, of a line, given the points (x_1, y_1) and (x_2, y_2) is

$$M = \frac{Y_2 - Y_1}{X_2 - X_1}$$

2. Find the slope of the line passing through the points (4, 3) and (5, -2).

$$m = \frac{-2-3}{5-4} = \frac{-5}{1} = \frac{-5}{5}$$

3. Find the slope of the line passing through the points (10, -1) and (10, 1).

$$\frac{1--1}{10-10} = \frac{2}{0}$$
 Slope is undefined

4. Find the slope of the line passing through the points (1, 11) and (5, 11).

$$\frac{11-11}{5-1} = \frac{0}{4}$$
 Slope is 0

5. Find the slope of the line passing through the points (4, 9) and (11, 5).

$$\frac{5-9}{11-4} = \frac{-4}{7}$$

6. Find the slope of the line passing through the points (0, 0) and (a, b).

$$\frac{b-0}{a-o} = \frac{b}{a} \qquad slope = \frac{b}{a}$$

7. Find the slope of the line passing through the points (c, d) and (g, h).

Slope =
$$\frac{h-d}{g-c}$$

$$d = \sqrt{(Y_2 - Y_1)^2 + (X_2 - X_1)^2}$$

LEAVE ALL ANSWERS AS EXACT VALUES.

9. Find the distance between points (4, 3) and (5, -2).

$$d = \sqrt{(-2-3)^2 + (5-4)^2}$$

$$\sqrt{(-5)^2 + (1)^2}$$

$$\sqrt{25 + 1}$$

10. Find the distance between points (10, -1) and (10, 1).

$$\sqrt{(1-1)^{2} + (10-10)^{2}} \rightarrow \sqrt{4} = 2$$

$$\sqrt{(2)^{2} + (0)^{2}}$$

$$\sqrt{4+0}$$

11. Find the distance between points (1, 11) and (5, 11).

$$\sqrt{(11-11)^{2}+(5-1)^{2}} > \sqrt{16}$$

$$\sqrt{0^{2}+4^{2}}$$

$$\sqrt{4^{2}}$$

12. Find the distance between points (4, 9) and (11, 5).

$$\sqrt{(5-9)^2 + (11-4)^2} \qquad \sqrt{65} = 8.06$$

$$\sqrt{(-4)^2 + (7)^2}$$

$$\sqrt{16 + 49}$$

13. Find the distance between points (0, 0) and (a, b).

$$\frac{\sqrt{(b-0)^2 + (a-0)^2}}{\sqrt{b^2 + a^2}}$$

14. Find the distance between points (c, d) and (g, h).

$$\sqrt{(h-d)^2+(g-c)^2}$$

16. Find the midpoint of the line segment with endpoints (4, 3) and (5, -2).

$$Midpt. = \left(\frac{5+4}{2}, \frac{-2+3}{2}\right) \longrightarrow \left(\frac{9}{2}, \frac{1}{2}\right)$$

17. Find the midpoint of the line segment with endpoints (10, -1) and (10, 1).

$$\left(\frac{10+10}{2}, \frac{1+-1}{2}\right)$$

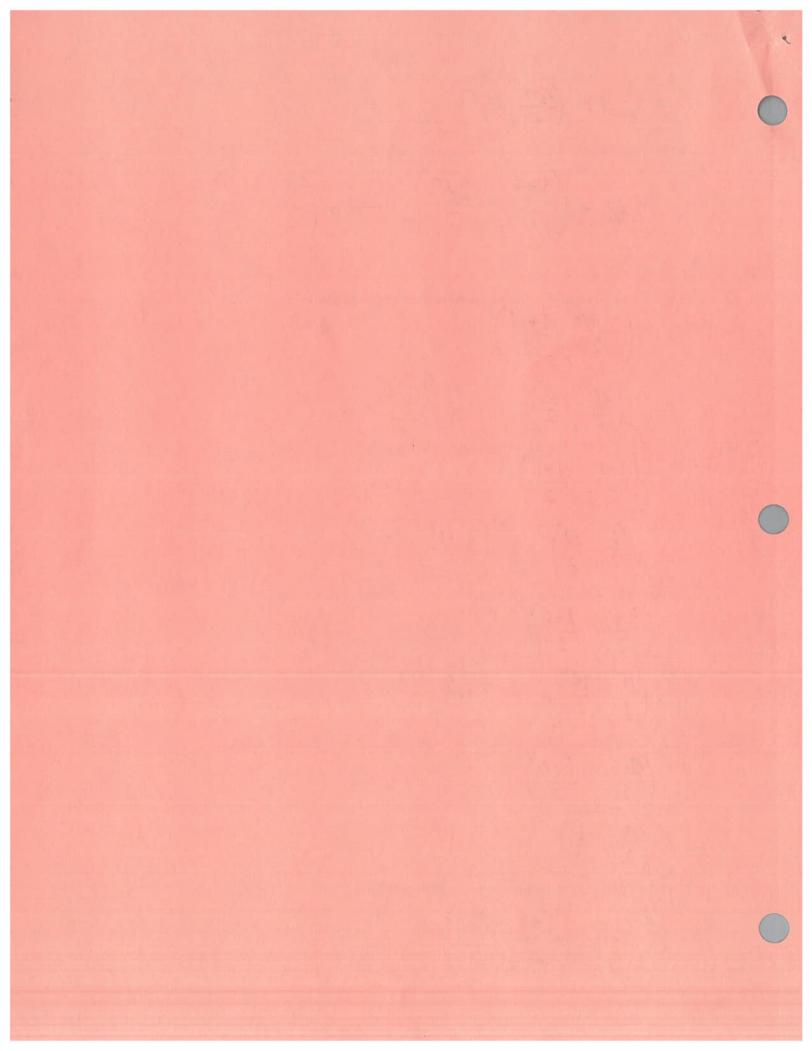
$$\left(\frac{20}{2}, \frac{0}{2}\right) \qquad (10, 0)$$

18. Find the midpoint of the line segment with endpoints (1, 11) and (5, 11).

$$\left(\frac{1+5}{2}, \frac{11+11}{2}\right)$$
 $\left(\frac{6}{2}, \frac{22}{2}\right)$ $(3, 11)$

19. Find the midpoint of the line segment with endpoints (4, 9) and (11, 5).

$$\left(\frac{4+11}{2}, \frac{9+5}{2}\right)$$
 $\left(\frac{15}{2}, \frac{14}{2}\right)$ $(7.5, 7)$


20. Find the midpoint of the line segment with endpoints (0, 0) and (a, b).

$$\left(\begin{array}{ccc}
\frac{a+0}{2}, & \frac{b+0}{2}
\end{array}\right)$$

$$\left(\begin{array}{ccc}
\frac{a}{2}, & \frac{b}{2}
\end{array}\right)$$

21. Find the midpoint of the line segment with endpoints (c, d) and (g, h).

$$\begin{pmatrix} \frac{c+g}{2}, \frac{d+h}{2} \end{pmatrix}$$

